Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生zh_TW
dc.contributor.advisorHuu-Sheng Luren
dc.contributor.author吳彥霂zh_TW
dc.contributor.authorYan-Mo Wuen
dc.date.accessioned2023-09-22T17:17:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation王慶裕 (2018)。 茶作學:茶樹栽培與茶園管理。臺北市:新學林。
李怡樺 (2018)。 台灣毛豆、甜玉米經濟產量之事栽度分析及未來調適之研究。碩士論文。台北:國立台灣大學農藝學研究所。
李淑美 (2004)。 植物保護圖鑑系列 4-茶樹保護。水分對茶樹所造成生理障礙,119-120頁。防檢局。台北。158頁。
谷婉萍、郭鴻裕 (2021)。原住民地區山地鄉 (區) 農業環境, 產業現況與栽培管理要點。技術服務 127:8-13。
邱芳慶、邱垂豐、林金池、黃正宗、葉茂生 (2010)。「不同海拔茶區青心烏龍季節間茶葉化學成分及品質之變異」。臺灣茶業研究彙報 29:1-10。
范澤昀 (2017)。利用品質適栽度模型探討氣候變遷對水稻外觀品質之衝擊與調適策略。碩士論文。台北:國立台灣大學農藝學研究所。
林士堯、楊承道(2023 年 6 月 4 日)。網格化觀測資料說明文件(2.5 版)。[2023年6月15日],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_document/20220708162241.pdf
林育聖、林儒宏、張維倩、邱祝芳、陳柏亨 (2022)。高海拔茶園低溫凍霜害防護策略研究探討。農林學報 69(2):117-127。
林修立、王俊寓、林士堯(2023 年 9 月 15 日)。AR5 統計降尺度溫度 V2 版資料生產履歷(1.0 版) 。 [ 2023年6月15日] ,取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20210830155550.pdf
林義豪、胡智益、張振厚、賴正南、陳右人 (2016) 。茶樹產期預測模式之建構。臺灣茶業研究彙報,37:1-20。
科技部、中央研究院環境變遷研究中心、交通部中央氣象局、臺灣師範大學地球科學系、國家災害防救科技中心 (2021)。IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。取自:臺灣氣候變遷推估資訊與調適知識平台 (nat.gov.tw)
黃裕銘 (2023)。推廣文章土壤簡介。取自:國立中興大學農業暨自然資源學院土壤調查試驗中心網址 :https://sstc.nchu.edu.tw/zh_TW/spread-content/node/1566201774001
陳誌宏、劉千如、邱垂豐、黃文理 (2019)。不同茶樹品種於乾旱逆境下之外表形態與生理指標之建立。作物、環境與生物資訊 16(3):150-161。
姚銘輝、鍾昀軒、徐永衡 (2015)。利用未來統計降尺度氣候資料評估臺灣水稻。生產潛勢。作物、環境與生物資訊 12(3):142-154。
劉秋芳、蔡憲宗 (2020) 臺灣茶樹歷年乾旱發生情形及旱害徵狀。茶業專訊 114:11-14。
劉秋芳、林儒宏、林育聖 (2021) 110 年春茶乾旱情形及因應措施。茶業專訊115:15-16。
Abd-Elmabod, S. K., Bakr, N., Muñoz-Rojas, M., Pereira, P., Zhang, Z., Cerdà, A., Jordán, A., Mansour, H., De la Rosa, D., Jones, L. (2019). Assessment of soil suitability for improvement of soil factors and agricultural management. Sustainability, 11(6): 1588.
Ahmed, S., Peters, C. M., Chunlin, L., Meyer, R., Unachukwu, U., Litt, A., Kennelly, E., Stepp, J. R. (2013). Biodiversity and phytochemical quality in indigenous and state‐supported tea management systems of Yunnan, China. Conservation Letters, 6(1): 28-36.
Ahmed, S., Griffin, T. S., Kraner, D., Schaffner, M. K., Sharma, D., Hazel, M., Leitch, Alicia R., Orians, C. M., Han, W., Stepp, J. R. (2019). Environmental factors variably impact tea secondary metabolites in the context of climate change. Frontiers in plant science, 10: 939.
Anan, T., Yamaguchi, Y., Tamura, Y., Mizukami, Y., & Sawai, Y. (2011). Effects of Temperature on Growth and Constituents of New Shoots in Tea Plants. Chagyo Kenkyu Hokoku (Tea Research Journal), 2008(106), 106: 191-106.
Bhattarai, B., Beilin, R., & Ford, R. (2015). Gender, agrobiodiversity, and climate change: A study of adaptation practices in the Nepal Himalayas. World Development, 70: 122-132.
Das, A. C., Noguchi, R., & Ahamed, T. (2020). Integrating an expert system, gis, and satellite remote sensing to evaluate land suitability for sustainable tea production in bangladesh. Remote Sensing, 12(24): 4136.
Dikshit, K. R., & Dikshit, J. K. (2014). North-east India: Land, people and economy: Springer.
Duncan, J. M., Saikia, S., Gupta, N., & Biggs, E. (2016). Observing climate impacts on tea yield in Assam, India. Applied Geography, 77: 64-71.
El Behairy, R. A., El Arwash, H. M., El Baroudy, A. A., Ibrahim, M. M., Mohamed, E. S., Rebouh, N. Y., & Shokr, M. S. (2023). Artificial Intelligence Integrated GIS for Land Suitability Assessment of Wheat Crop Growth in Arid Zones to Sustain Food Security. Agronomy, 13(5): 1281.
Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., Ahmad, S., Ahmed, N., Ali, M. A., Sarwar, G., Haque, E., Iqbal, P., & Hussain, S. (2020). The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports, 10(1): 18013. doi:10.1038/s41598-020-74740-3
Foy, C., Chaney, R. t., & White, M. (1978). The physiology of metal toxicity in plants. Annual review of plant physiology, 29(1): 511-566.
Jayasinghe, S. L., Kumar, L., & Kaliyadasa, E. (2021). The future of high-quality Ceylon tea seems bleak in the face of climate change. International Journal of Biometeorology, 65: 1629-1646.
Layomi Jayasinghe, S., Kumar, L., & Sandamali, J. (2019). Assessment of potential land suitability for tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka using a GIS-based multi-criteria approach. Agriculture, 9(7): 148.
Liu, J., Wen, B., Liu, X., Yang, Y., Li, M., & Wang, X. (2022). Molecular and metabolic changes under environmental stresses: the biosynthesis of quality components in preharvest tea shoots. Horticulturae, 8(2): 173.
Lu, Y., Hu, Y., & Li, P. (2017). Consistency of electrical and physiological properties of tea leaves on indicating critical cold temperature. Biosystems Engineering, 159: 89-96.
Lemmesa, F. (1996). Tea production and management. Teaching Handout; Department of Plant Sciences, Jimma College of Agriculture: Jimma, Ethiopia, 1-14.
Mallik, P., & Ghosh, T. (2022). Impact of climate on tea production: a study of the Dooars region in India. Theoretical and Applied Climatology, 147: 559-573.
Mukhopadhyay, M., & Mondal, T. K. (2017). Cultivation, improvement, and environmental impacts of tea. In: Oxford Research Encyclopedia of Environmental Science.
Natesan, S. (1999). Tea Soils. In: Global Advances in Tea Science. NK Jain.
Nicholson, S. E., Funk, C., & Fink, A. H. (2018). Rainfall over the African continent from the 19th through the 21st century. Global and planetary change, 165: 114-127.
Pour, S. H., Abd Wahab, A. K., & Shahid, S. (2020). Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmospheric Research, 233: 104704.
Qi, Y., Zhang, Q., Hu, S., Wang, R., Wang, H., Zhang, K., Zhao, H., Ren, S., Yang, Y., & Zhao, F. (2022). Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in North China. Agriculture, 12(11): 1948.
Rama Rao, N., Kapoor, M., Sharma, N., & Venkateswarlu, K. (2007). Yield prediction and waterlogging assessment for tea plantation land using satellite image‐based techniques. International Journal of Remote Sensing, 28(7): 1561-1576.
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., & Fricko, O. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42: 153-168.
Rossiter, D. (2009). Land evaluation: towards a revised framework; Land and Water Discussion Paper 6, FAO. FAO, Rome (2007), 107 pp., ISSN: 1729-0554; Only available in PDF format as www. fao. org/nr/lman/docs/lman_070601_en. pdf; free. In: Elsevier.
Sahu, N., Das, P., Saini, A., Varun, A., Mallick, S. K., Nayan, R., Aggarwal, SP., Pani, B., Kesharwani, R., & Kumar, A. (2023). Analysis of Tea Plantation Suitability Using Geostatistical and Machine Learning Techniques: A Case of Darjeeling Himalaya, India. Sustainability, 15(13): 10101.
Shoubo, H. (1989). Meteorology of the tea plant in China: a review. Agricultural and forest meteorology, 47(1): 19-30.
Sultana, J., Siddique, M., Kamaruzzaman, M., & Halim, M. (2014). Conventional to ecological: Tea plantation soil management in Panchagarh District of Bangladesh. J. Sci. Technol. Environ. Inform, 1: 27-37.
Wijeratne, M., & Fordham, R. (1996). Development and characteristics of leaf primordia of tea.
Yüksek, T., & Yüksek, F. (2021). Effects of altitude, aspect, and soil depth on carbon stocks and properties of soils in a tea plantation in the humid Black Sea region. Land Degradation & Development, 32(15): 4267-4276.
Zahra, N., Hafeez, M. B., Wahid, A., Al Masruri, M. H., Ullah, A., Siddique, K. H., & Farooq, M. (2023). Impact of climate change on wheat grain composition and quality. Journal of the Science of Food and Agriculture, 103(6): 2745-2751.
Zhang, Y. L., Luo, S. H., Zeng Y. H., & Pengo P. Y. (1997). Study nutrient scale of sufficiency or deficiency in tea soils in Hunan province and fertilizing recommendation. J. of Tea Soil 17 (2): 161-170
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., & Ciais, P. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences, 114(35): 9326-9331.
Zhao, Y., Zhao, M., Zhang, L., Wang, C., & Xu, Y. (2021). Predicting possible distribution of tea (Camellia sinensis L.) under climate change scenarios using MaxEnt model in China. Agriculture, 11(11): 1122.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90073-
dc.description.abstract氣候變遷是近年來全世界重視的議題,氣溫的上升、降雨時空間分布不均、季節長短的變化等皆對作物栽培有著不小的衝擊。濁水溪流域是我國重要的農業命脈,其坡地更是涵蓋著許多台灣主要的高山茶茶區,面對氣候變遷所帶來的氣溫上升、降雨量變化及極端天氣事件,台灣尚無研究使用未來推估資料評估濁水溪流域坡地茶作適栽程度的變化。因此,本研究使用青心烏龍生長所需的氣候條件建立線性模型,並利用AR5統計降尺度未來推估氣候資料,模擬基期年(2001-2020年)與3個未來期程近程(2021-2040年)、中程(2041-2060年)、遠程(2081-2100年)中3個暖化情境RCP2.6、RCP4.5、RCP8.5下之春茶與冬茶溫度適栽度,使用地理資訊系統,結合雨量與土壤pH值分析濁水溪流域坡地之適栽區分布與變化。本研究之結果顯示,春茶適栽區在RCP2.6、RCP4.5、RCP8.5的暖化情境下,由於生長期均溫上升,濁水溪流域坡地整體春茶適栽度將逐漸變好,且隨著暖化情境越發嚴重,適栽度上升越多,其中,二水鄉、竹山鎮、集集鎮、名間鄉、鹿谷鄉、仁愛鄉、古坑鄉、林內鄉、梅山鄉在所有暖化情境下皆適合繼續生產春茶;至於冬茶適栽區,由於生長期均溫上升過高,使著整體適栽度逐漸變差,且在RCP8.5遠程(2081 -2100年)時輸給了同情境的春茶,其中僅剩竹山鎮、仁愛鄉、阿里山鄉、古坑鄉在所有暖化情境下仍適合生產冬茶,儘管這些鄉鎮還適合生產冬茶但在遠程(2081 -2100年)時適栽度已經有減少的趨勢。根據本研究結果,目前茶葉的主要生產區到世紀末仍能維持茶葉生產,且春茶的產量還會增加,但尚無考慮品質的改變及降雨時空間不均的影響,恐無法樂觀的認為茶葉的經濟產值不會受到衝擊。本研究希望藉由探討氣候變遷下濁水溪流域坡地茶葉生產的調適策略,提供未來設立茶樹栽培專區之參考,此外,仍需進一步探討氣候變遷對茶葉品質的影響,方能提前預防氣候變遷所帶來的影響。zh_TW
dc.description.abstractClimate change has become a globally recognized issue in recent years, with rising temperatures, uneven spatial distribution of rainfall, and changes in the length of seasons have significant impacts on crop cultivation. The Jhuoshuei River Basin is a crucial agricultural region in Taiwan, encompassing many major high-mountain tea-growing areas. However, there has been limited research in Taiwan on assessing the changes in the suitability of tea cultivation on the sloping lands of the Jhuoshuei River Basin using future estimation data. Therefore, this study aimed to establish a linear model based on the climatic conditions required for the growth of Chin-Shin-Oolong tea and utilized statistical downscaling of future climate data from the AR5 framework to simulate the temperature suitability for spring tea and winter tea during the base period (2001–2020) and three future timeframes: near-term (2021–2040), mid-term (2041–2060), and long-term (2081–2100) under three warming scenarios (RCP2.6, RCP4.5, and RCP8.5). Geographic information systems were used to analyze the distribution and changes in suitable cultivation areas, considering rainfall and soil pH values, on the slopeland of the Jhuoshuei River Basin.The results of this study indicated that under the RCP2.6, RCP4.5, and RCP8.5 warming scenarios, the overall suitability for spring tea cultivation in the Jhuoshuei River Basin is projected to gradually improve due to the increasing mean temperature during the growing period. Moreover, as the severity of the warming scenarios increases, the increase in suitability becomes more significant. Townships such as Ershui Township, Zhushan Town, Jiji Town, Mingjian Township, Lugu Township, Ren'ai Township, Gukeng Township, Linnei Township, and Meishan Township are all suitable for continued spring tea production under all warming scenarios. However, for winter tea cultivation, the overall suitability gradually decreases due to excessively high mean temperatures during the growing season. In the RCP8.5 long-term scenario (2081-2100), winter tea loses its suitability compared to spring tea in the same scenario. Only Zhushan Town, Lugu Township, Ren'ai Township, and Gukeng Township remain suitable for winter tea production under all warming scenarios. However, even in these townships, there is a decreasing trend in suitability for winter tea cultivation in the long-term scenario (2081-2100). Based on the results of this study, the current major tea-producing regions in Taiwan are expected to maintain tea production until the end of the century, and the yield of spring tea is projected to increase. However, the study did not consider changes in tea quality and the impacts of uneven distribution of rainfall. Therefore, it is not optimistic to assume that the economic value of tea production will remain unaffected. This research aims to explore adaptation strategies for tea production on the slopeland of the Jhuoshuei River Basin under climate change and provide references for establishing specialized tea cultivation zones in the future. Additionally, further research is needed to examine tea quality and water supply issues to proactively mitigate the impacts of climate change.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:17:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:17:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents審定書 i
致謝 ii
摘要 iii
Abstact iv
目錄 vi
圖目錄 viii
表目錄 x
壹、 前言 1
貳、 文獻回顧 2
一、 氣候變遷與極端氣候 2
二、 氣候對糧食與經濟作物的衝擊 5
三、 環境因子對茶葉生產的影響 6
四、 作物適栽度分析 9
五、 研究目的 11
參、 材料方法 12
一、 研究區域範圍訂定 12
二、 氣象與土壤及作物資料來源 15
三、 氣候變遷情境之選擇 18
四、 分析設備與軟體 18
五、 研究方法 19
肆、 結果 28
一、 不同氣候變遷情境下茶樹生長期平均日均溫的變化 28
二、 不同氣候變遷情境下茶樹溫度適栽度的分布與變化 31
三、 不同氣候變遷情境下茶樹雨量適栽度的分布與變化 39
四、 土壤pH值分布 43
五、 不同暖化情境下春茶與冬茶適栽區的分布與變化趨勢 44
六、 不同暖化情境下各鄉鎮春茶與冬茶適栽區變化趨勢 52
伍、 討論 60
一、 影響適栽度評估結果的不確定因素 60
二、 最適栽培區域與現行栽培區之比較 61
三、 未來之調適策略 62
陸、 結論與未來展望 63
柒、 參考文獻 64
-
dc.language.isozh_TW-
dc.subject適栽度分析zh_TW
dc.subject產區規劃zh_TW
dc.subject調適策略zh_TW
dc.subject氣候變遷zh_TW
dc.subject茶zh_TW
dc.subject產量zh_TW
dc.subjectclimate changeen
dc.subjectsuitability analysisen
dc.subjectadaptation strategyen
dc.subjecttea (Camellia sinensis (L.) Kuntze)en
dc.subjectyielden
dc.subjectproduction zone planningen
dc.title氣候變遷下濁水溪流域坡地茶葉產量之適栽度分析與調適策略zh_TW
dc.titleStudy on suitability analysis and adaption strategies for tea yield of Jhuoshuei River basin slopeland under climate changeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李紅曦;姚銘輝;劉力瑜;王淑珍zh_TW
dc.contributor.oralexamcommitteeHung-Hsi Lee;Ming-Hwi Yao;Li-Yu Liu;Shu-Jen Wangen
dc.subject.keyword氣候變遷,茶,產量,適栽度分析,調適策略,產區規劃,zh_TW
dc.subject.keywordclimate change,tea (Camellia sinensis (L.) Kuntze),yield,suitability analysis,adaptation strategy,production zone planning,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202303738-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-08
11.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved