Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90071
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世楠zh_TW
dc.contributor.advisorShih-Nan Chenen
dc.contributor.author李琦文zh_TW
dc.contributor.authorChi-Wen Lien
dc.date.accessioned2023-09-22T17:17:30Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationBurns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A flexible framework for numerical simulations with spectral methods. Physical Review Research, 2(2), 023068.

Chang, C. Y., & Held, I. M. (2019). The control of surface friction on the scales of baroclinic eddies in a homogeneous quasigeostrophic two-layer model. Journal of the Atmospheric Sciences, 76(6), 1627-1643.

Chang, C.-Y., & Held, I. M. (2021). The parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-layer model on a β plane with quadratic friction. Journal of the Atmospheric Sciences, 78(1), 97–106.

Chen, S. N. (2023). Revisiting the Baroclinic Eddy Scalings in Two-Layer, Quasigeostrophic Turbulence: Effects of Partial Barotropization. Journal of Physical Oceanography, 53(3), 891-913.

Ferrari, R., & Wunsch, C. (2009). Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41, 253-282.

Gallet, B., & Ferrari, R. (2020). The vortex gas scaling regime of baroclinic turbulence. Proceedings of the National Academy of Sciences, 117(9), 4491-4497.
Gallet, B., & Ferrari, R. (2021). A quantitative scaling theory for meridional heat transport in planetary atmospheres and oceans. AGU Advances, 2(3), e2020AV000362.

Haidvogel, D. B., & Held, I. M. (1980). Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. Journal of Atmospheric Sciences, 37(12), 2644-2660.

Held, I. M., & Larichev, V. D. (1996). A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. Journal of Atmospheric Sciences, 53(7), 946-952.

Held, I. M. (1999). The macroturbulence of the troposphere. Tellus A, 51(1), 59-70.

Kong, H., & Jansen, M. F. (2017). The eddy diffusivity in barotropic β-plane turbulence. Fluids, 2, 54.

Larichev, V. D., & Held, I. M. (1995). Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. Journal of physical oceanography, 25(10), 2285-2297.

Lilly, D. K. (1989). Two-dimensional turbulence generated by energy sources at two scales. Journal of Atmospheric Sciences, 46(13), 2026-2030.

Rhines, P. B. (1975). Waves and turbulence on a beta-plane. Journal of Fluid Mechanics, 69(3), 417-443.

Salmon, R. (1980). Baroclinic instability and geostrophic turbulence. Geophysical & Astrophysical Fluid Dynamics, 15(1), 167-211.

Salmon, R. (1998). Lectures on geophysical fluid dynamics. Oxford University Press.

Salmon, R. (1982). Geostrophic turbulence. Topics in ocean physics, 30, 78.

Scott, R. B., & Wang, F. (2005). Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. Journal of Physical Oceanography, 35(9), 1650-1666.

Stith, J. L., Baumgardner, D., Haggerty, J., Hardesty, R. M., Lee, W. C., Lenschow, D., ... & Vömel, H. (2018). 100 years of progress in atmospheric observing systems. Meteorological monographs, 59, 2-1.

Stone, P. H. (1972). A simplified radiative-dynamical model for the static stability of rotating atmospheres. Journal of the Atmospheric Sciences, 29(3), 405-418.

Thompson, A., & Young, W. (2007). Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. Journal of the Atmospheric Sciences, 64, 3214–3231.

Vallis, G. K. (2017). Atmospheric and oceanic fluid dynamics. Cambridge University Press.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90071-
dc.description.abstract海洋與大氣中偏離緯向平均或時間平均值中的擾動場被稱之為渦旋,它們對於中緯度大氣和海洋的南北向熱傳運輸扮演著重要的角色,並且塑造了現今的平均溫度結構。這些熱傳輸一直被當成是宏觀渦漩熱擴散的結果,現今絕大部分的渦旋擴散理論幾乎都是基於此觀點出發。透過在均勻背景平均場之準地轉平衡模式中的渦漩研究,前人提出了各種參數化理論(被稱為局部擴散理論)。然而,這些理論以背景場為定值為前提,現今仍缺乏將局部擴散理論應用到非均勻流場中的嚴謹分析。

為了測試局部擴散理論在非均勻背景流場中的可用性,我們利用Dedalus(Python 偏微分方程求解工具)撰寫均勻背景流場與非均勻背景流場之兩層準地轉平衡模式。首先我們在均勻背景場中驗證Gallet和Ferrari(2021)提出的局部擴散理論,接著將局部擴散理論預測之渦漩擴散率,帶入熱通量輻散與差異加熱的平衡式,可以重新構建南北向溫度剖面,並將其與真實剖面進行比較。我們發現在弱β值的實驗中,重新構建的溫度剖面與真實剖面較為接近,可以驗證局部擴散性理論的實用性。然而,當β值增加,可預測性則隨之降低。由於β值的增加產生了噴流,使背景非均勻性增加,實際上阻礙了經向渦旋熱傳輸,導致擴散性大幅減小,而局部擴散性理論則不考慮背景場的變化,因此對溫度梯度的估計出現顯著高估。
zh_TW
dc.description.abstractEddies, defined as disturbances from zonal or time mean, play an important role in meridional heat transport for the midlatitude atmosphere and ocean, thereby helping to shape the mean temperature structure. This eddy transport has long been studied as a result of diffusion due to macroturbulence, and from this perspective, a theory for the eddy diffusivity is of fundamental importance. Various scaling laws for the diffusivity have been proposed by studying turbulence generated from homogeneous mean flows (referred to as local scaling theory). But, there is a lack of rigorous analysis on the applicability of these local scaling theory back to more realistic, inhomogeneous mean flows.
To test the utility of local scaling theory in inhomogeneous turbulence, the evolution of two-layer, quasi-geostrophic potential vorticity, forced by a meridionally varying forcing, is implemented into a spectral PDE solver. The solutions of the resulting turbulence fields were validated against a prior study of Gallet and Ferrari (2021). The local scaling theory are evaluated as follows: Using an equilibrated mean state as an input, we apply the local scaling theory to estimate the meridional profile of diffusivity. From a balance between diffusive transport and forcing, we can then re-construct the meridional temperature profile, and the re-construction is evaluated against the true profile. It is found that, for weak β, the re-constructed temperature profiles closely resemble the true profiles, supporting the utility of local scaling theory. However, as β increases, the comparisons deteriorate. Emergence of zonal jets appears to block the meridional eddy transport near the jet cores, leading to large reduction in diffusivity there and thus a large overestimation of temperature gradient using the local scaling theory.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:17:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:17:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iv
List of figures vi
List of table x
Chapter 1 Introduction 1
Chapter 2 Method 6
2.1 Formulation 6
2.1.1 Homogeneous two-layer quasi-geostrophic model 6
2.1.2 Inhomogeneous two-layer quasi-geostrophic model 10
2.2 Numerical experiment design 12
2.3 The method of reconstructing a temperature profile using eddy diffusivity 13
Chapter 3 Results 16
3.1 Characteristics of 2LQG turbulence – Homogeneous Model 16
3.2 Model Validation – Homogeneous Model 18
3.2.1 Energy budget 18
3.2.2 Test GF21’s local scaling theory 20
3.3 Testing the utility of local scaling theory in the inhomogeneous model 21
3.3.1 Reproduce GF21’s work 21
3.3.2 Local eddy diffusivity 22
3.3.3 Calculating the temperature profile using a modified approach 23
Chapter 4 Discussion 24
4.1 Error analysis 24
4.2 Mechanism 25
4.2.1 Failure of local theory 25
4.2.2 Limitations of the local scaling theory 26
Chapter 5 Summary 28
Figures 30
Tables 39
Appendix Dedalus guide 41
Reference 42
-
dc.language.isoen-
dc.title測試現有渦漩尺度理論在非均勻背景流場之準地轉模式中的可用性zh_TW
dc.titleTesting the Utility of Local Scaling Theory in Inhomogeneous, Quasi-Geostrophic Turbulenceen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭鴻基;曾于恒zh_TW
dc.contributor.oralexamcommitteeHung-Chi Kuo;Yu-Heng Tsengen
dc.subject.keyword地轉渦旋,局部渦漩尺度理論,渦漩熱擴散,非均勻流場,zh_TW
dc.subject.keywordgeostrophic turbulence,local scaling theory,eddy diffusive heat transport,inhomogeneous mean flow,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202303583-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
1.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved