Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧虎生zh_TW
dc.contributor.advisorHuu-Sheng Luren
dc.contributor.author陳明陽zh_TW
dc.contributor.authorMing-Yang Chenen
dc.date.accessioned2023-09-22T17:10:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation林奇鴻. (2019) . 超甜玉米果穗品質變化與冠層微氣象之相關性分析.臺灣大學農藝學研究所學位論文 (2019年) . https://doi.org/10.6342/NTU201901901
姚箴. (2023) . 甜玉米生理支持型專家系統之建立. 臺灣大學農藝學研究所學位論文 (2023年)
陳雲蘭, 陳品妤, 詹智雄, 沈里音, 馮智勇, 劉家豪, 林佑蓉, 中央氣象局 & 多釆科技有限公司. (2014) . 台灣自動氣象站氣溫資料補遺方法探討及網格化分析. 103年天氣分析與預報研討會. A5-5.
詹雅勛. (2019) . 轉作選擇甜玉米產業概況. 種苗科技專訊, 107, 25–27.
謝光照, & 戴宏宇. (2020) . 鮮食用玉米收穫適期之判斷. 農業試驗所技術服務專刊, 122, 1-7.
Abbasi, R., Martinez, P., & Ahmad, R. (2022) . The digitization of agricultural industry – a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042
Angel, J. R., Widhalm, M., Todey, D., Massey, R., & Biehl, L. (2017) . The U2U Corn Growing Degree Day tool: Tracking corn growth across the US Corn Belt. Climate Risk Management, 15, 73–81. https://doi.org/10.1016/j.crm.2016.10.002
Belupu, I., & Ipanaque, W. (2022) . A web decision support system for banana farmers centralizing information from different weather stations. 2021 IEEE International Conference on Aerospace and Signal Processing (INCAS) , 1–4. https://doi.org/10.1109/incas53599.2021.9666930
Bonhomme, R. (2000) . Bases and limits to using ‘degree.day’ units. European Journal of Agronomy, 13 (1) , 1–10. https://doi.org/10.1016/S1161-0301 (00) 00058-7
Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020) . Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176, 105626. https://doi.org/10.1016/j.compag.2020.105626
Creech, R. G. (1965) . Genetic control of carbohydrate synthesis in maize endosperm. Genetics, 52 (6) , 1175. https://doi.org/10.1093/genetics/52.6.1175
Cross, H. Z., & Zuber, M. S. (1972) . Prediction of flowering dates in maize based on different methods of estimating thermal units. Agronomy Journal, 64 (3) , 351–355. https://doi.org/10.2134/agronj1972.00021962006400030029x
daSilveira, F., Lermen, F. H., & Amaral, F. G. (2021) . An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Computers and Electronics in Agriculture, 189, 106405. https://doi.org/10.1016/j.compag.2021.106405
Edwards, G. E., Nakamoto, H., Burnell, J. N., & Hatch, M. D. (1985) . Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Annual Review of Plant Physiology, 36 (1) , 255–286. https://doi.org/10.1146/annurev.pp.36.060185.001351
Gilmore Jr, E. C., & Rogers, J. S. (1958) . Heat units as a method of measuring maturity in corn 1. Agronomy Journal, 50 (10) , 611–615. https://doi.org/10.2134/agronj1958.00021962005000100014x
Kent Shannon, D., Clay, D. E., & Sudduth, K. A. (2018) . An introduction to precision agriculture. Precision Agriculture Basics, 1–12. https://doi.org/10.2134/precisionagbasics.2016.0084
Kim, S.-H., Yang, Y., Timlin, D. J., Fleisher, D. H., Dathe, A., Reddy, V. R., & Staver, K. (2012) . Modeling temperature responses of leaf growth, development, and biomass in maize with MAIZSIM. Agronomy Journal, 104 (6) , 1523–1537. https://doi.org/10.2134/agronj2011.0321
Kumudini, S., Andrade, F.H., Boote, K.J., Brown, G.A., Dzotsi, K.A., Edmeades, G.O., Gocken, T., Goodwin, M., Halter, A.L., Hammer, G.L., Hatfield, J.L., Jones, J.W., Kemanian, A.R., Kim, S.-., Kiniry, J., Lizaso, J.I., Nendel, C., Nielsen, R.L., Parent, B., Stöckle, C.O., Tardieu, F., Thomison, P.R., Timlin, D.J., Vyn, T.J., Wallach, D., Yang, H.S. & Tollenaar, M.. (2014) . Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agronomy Journal, 106 (6) , 2087–2097. https://doi.org/10.2134/agronj14.0200
Legg, S., & Hutter, M. (2007) . A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17. https://doi.org/10.48550/arXiv.0706.3639
Li, H., Li, J., Shen, Y., Zhang, X., & Lei, Y. (2018) . Web-based irrigation decision support system with limited inputs for farmers. Agricultural Water Management, 210, 279–285. https://doi.org/10.1016/J.AGWAT.2018.08.025
Li, M., Sui, R., Meng, Y., & Yan, H. (2019) . A real-time fuzzy decision support system for alfalfa irrigation. Computers and Electronics in Agriculture, 163, 104870. https://doi.org/10.1016/J.COMPAG.2019.104870
McMaster, G. S., & Wilhelm, W. W. (1997) . Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87 (4) , 291–300. https://doi.org/10.1016/S0168-1923 (97) 00027-0
Mite-Baidal, K., Delgado-Vera, C., Solís-Avilés, E., Jiménez-Icaza, M., Baque, W., & Santos-Chico, M. P. (2017) . Knowledge-Based Expert System for Control of Corn Crops. Technologies and Innovation. Springer International Publishing, 749, 84–95. https://doi.org/10.1007/978-3-319-67283-0_7
Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016) . A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121–131. https://doi.org/10.1016/J.COMPAG.2016.04.003
Nelson Ford, F. (1985) . Decision support systems and expert systems: A comparison. Information & Management, 8 (1) , 21–26. https://doi.org/10.1016/0378-7206 (85) 90066-7
Piper, E. L., Boote, K. J., Jones, J. W., & Grimm, S. S. (1996) . Comparison of two phenology models for predicting flowering and maturity date of soybean. Crop Science, 36 (6) , 1606-1614. https://doi.org/10.2135/cropsci1996.0011183X003600060033x
Poch, M., Comas, J., Rodriguez-Roda, I., Sanchez-Marre, M., & Cortés, U. (2004) . Designing and building real environmental decision support systems. Environmental Modelling & Software, 19 (9) , 857–873. https://doi.org/10.1016/j.envsoft.2003.03.007
Prabakaran, G., Vaithiyanathan, D., & Ganesan, M. (2018) . Fuzzy decision support system for improving the crop productivity and efficient use of fertilizers. Computers and Electronics in Agriculture, 150, 88–97. https://doi.org/10.1016/J.COMPAG.2018.03.030
Ring, D. R., Harris, M. K., Jackman, J. A., & Henson, J. L. (1983) . A FORTRAN computer program for determining start date and base temperature for degree day models. Texas Agricultural Experiment Station (USA) . No. 1537.
Ruml, M., Vuković, A., & Milatović, D. (2010) . Evaluation of different methods for determining growing degree-day thresholds in apricot cultivars. International Journal of Biometeorology, 54, 411–422. https://doi.org/10.1007/s00484-009-0292-6
Shneiderman, B., Plaisant, C., Cohen, M. S., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016) . Designing the user interface: strategies for effective human-computer interaction. Pearson.
Simionesei, L., Ramos, T. B., Palma, J., Oliveira, A. R., & Neves, R. (2020) . IrrigaSys: A web-based irrigation decision support system based on open source data and technology. Computers and Electronics in Agriculture, 178, 105822. https://doi.org/10.1016/j.compag.2020.105822
Soltani, A., Robertson, M. J., Torabi, B., Yousefi-Daz, M., & Sarparast, R. (2006) . Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and forest meteorology, 138 (1-4) , 156-167. https://doi.org/10.1016/j.agrformet.2006.04.004
Trudgill, Dl., Honek, A., Li, D., & vanStraalen, N. M. (2005) . Thermal time--concepts and utility. Annals of Applied Biology, 146 (1) , 1–14. https://doi.org/10.1111/j.1744-7348.2005.04088.xw3techs.com. (2023, April 21) . Usage statistics of PHP for websites. https://w3techs.com/technologies/details/pl-php
Yang, S., Logan, J., & Coffey, D. L. (1995) . Mathematical formulae for calculating the base temperature for growing degree days. Agricultural and Forest Meteorology, 74 (1) , 61–74. https://doi.org/10.1016/0168-1923 (94) 02185-M
Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020) . Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, 105256. https://doi.org/10.1016/j.compag.2020.105256
Zhou, G., & Wang, Q. (2018) . A new nonlinear method for calculating growing degree days. Scientific Reports, 8 (1) , 10149. https://doi.org/10.1038/s41598-018-28392-z
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90044-
dc.description.abstract智慧農業結合資通訊技術與實際資料的使用,有望提升農民在氣候變遷下的調適能力。甜玉米的適採期的預測相當關鍵,太晚採收會使品質降低。氣溫是影響作物生長最重要的氣象因子,而生育度日 (GDD) 是用來評估溫度對於作物生長反應的重要工具。近期GDD模式則逐漸重視高溫對於作物的影響,但仍缺乏對於個別作物品種的參數校正,在預測甜玉米的生育期的誤差過大。為此,本研究提出了一套窮舉演算法來最佳化作物參數,參數最佳化模式的表現相較傳統GDD10,30算法,採收期預測日數與實際日數的R2自0.69 – 0.79提升到0.93 – 0.96,RMSE也從5.56至8.60天減少至2.39至3.90天。本研究並利用經最佳化的參數及GDD算法,發展出一套網路甜玉米決策支援系統,系統開發過程使用網路程式設計工具及開源氣象資料,設計出一套使用者友善的決策支援系統,可於手機及電腦上使用。其預測能力優於現行臺灣良好農業規範的生育日數法,及農試單位常用之GDD10,30生育度日法,解決傳統生育度日模式無法精確預測甜玉米生育期的問題。此外,使用者亦可自訂參數,未來若搭配實際物候資料與參數最佳化演算法校正,有潛力套用在不同作物的物候預測上。在氣候變遷下,提供農民、企業、學術及農政單位一個快速評估作物在不同氣候條件下的生長反應的工具。zh_TW
dc.description.abstractIntegration of information and communication technology (ICT) and real data in intelligence agriculture holds the potential to enhance farmers' adaptive capacity under climate change. Predicting the optimal harvesting period for sweet corn is crucial as late harvesting can result in reduced quality. Temperature is the most important weather factor influencing crop growth, and growing degree days (GDD) is an important tool for assessing the temperature response of crops. Recent GDD models have started considering the impact of high temperatures on crops but still lack parameter calibration for individual crop varieties, resulting in significant errors in predicting the growth stages of sweet corn. Therefore, this study proposes an exhaustive search method to optimize crop parameters, and the performance of the parameter optimization model is compared to the traditional GDD10,30 algorithm. The R2 value for predicting the harvesting period improved from 0.69-0.79 to 0.93-0.96, and the root mean square error (RMSE) decreased from 5.56-8.60 days to 2.39-3.90 days. Using the optimized parameters and GDD algorithm, a web-based decision support system for sweet corn was developed. The system utilizes web programming tools and open-source meteorological data to create a user-friendly decision support system that can be accessed through mobile phones and computers. The predictive capability of the system surpasses the current Taiwan Good Agricultural Practice's method for calculating growing days and the commonly used GDD10,30 method employed by agricultural research units, addressing the issue of inaccurate prediction of sweet corn growth stages by traditional growing degree day models. Additionally, users can customize the parameters, and future applications may include the calibration of actual phenological data and parameter optimization algorithms for different crops' phenological predictions. In the face of climate change, this system provides farmers, businesses, academia, and agricultural authorities with a tool to quickly assess crop growth responses under different climate conditions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:10:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:10:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 II
誌謝 III
中文摘要 IV
英文摘要 V
目錄 VII
圖目錄 X
表目錄 XI
第一章 前言 1
1.1 研究動機 1
1.2 研究問題與假說 2
1.3 研究流程與預期成果 3
第二章 文獻回顧 5
2.1 臺灣甜玉米生產概況與挑戰 5
2.2 溫度與生育度日 6
2.3 改良版生育度日演算法 10
2.4 智慧農業簡介 12
2.5 農業決策支援系統簡介 14
2.6 以網路為本的農業決策支援系統 17
2.7 小結 20
第三章 研究方法 21
3.1 使用資料及演算法 21
3.1.1 氣象資料取得與處理 21
3.1.2 甜玉米各生育期栽培管理建議 22
3.1.3 以窮舉法最佳化作物參數 23
3.2 生育度日算法與生育期判斷 26
3.3 本系統架構與使用者介面設計 28
3.4 開發工具與系統建置 29
3.4.1 HTML/CSS/JavaScript/jQuery 29
3.4.2 Bootstrap 30
3.4.3 Highchart 30
3.4.4 PHP 30
3.4.5 Python 31
3.4.6 MySQL 31
3.5 網站部屬 31
第四章 結果 32
4.1 窮舉法校正後的作物參數 32
4.2 白美人的採收日期驗證 35
4.3 系統功能概述 36
4.4 生育期推估及栽培建議 39
4.5 自訂參數模式 41
第五章 討論 43
5.1 不同季節與年份的生育情形 43
5.1.1 2020年夏秋季與冬春季的比較 43
5.1.2 2016年、2019年、2022年春季的生育推估比較 44
5.1.3 GDD10,30線性模式與最佳化線性模式的比較 46
5.2 與類似系統的比較 47
5.2.1 祕魯的香蕉GDD系統 47
5.2.2 農業小幫手—積溫計算器 48
5.2.3 農業小幫手—作物生育期推估系統 50
5.2.4 U2U玉米GDD 52
5.3 系統的限制 55
5.4 系統的貢獻 56
第六章 結論與未來展望 59
第七章 參考文獻 60
-
dc.language.isozh_TW-
dc.subject決策支援系統zh_TW
dc.subject生育度日zh_TW
dc.subject甜玉米zh_TW
dc.subject氣候變遷zh_TW
dc.subject物候學zh_TW
dc.subjectSweet Cornen
dc.subjectGrowing Degree Daysen
dc.subjectClimate Changeen
dc.subjectDecision Support Systemen
dc.subjectPhenologyen
dc.title甜玉米生育期推估及栽培管理之網路決策支援系統zh_TW
dc.titleWeb-based Decision Support System for Sweet Corn Growth Stage Estimation and Production Plans Developmenten
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李紅曦;姚銘輝;劉力瑜;王淑珍zh_TW
dc.contributor.oralexamcommitteeHung-Hsi Lee;Ming-Hwi Yao;Li-Yu Liu;Shu-Jen Wangen
dc.subject.keyword決策支援系統,甜玉米,生育度日,氣候變遷,物候學,zh_TW
dc.subject.keywordDecision Support System,Sweet Corn,Growing Degree Days,Climate Change,Phenology,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202303709-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved