Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋zh_TW
dc.contributor.advisorShu-Wei Changen
dc.contributor.author惠維翰zh_TW
dc.contributor.authorWri-Han Huien
dc.date.accessioned2023-09-22T17:09:19Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation1. Fratzl, P., Collagen: structure and mechanics, an introduction. 2008: Springer.
2. Nimni, M.E., Collagen: volume II: biochemistry and biomechanics. 2018: CRC Press.
3. Yang, W., M.A. Meyers, and R.O. Ritchie, Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in Materials Science, 2019. 103: p. 425-483.
4. Gautieri, A., et al., Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 2011. 11(2): p. 757-766.
5. Orgel, J.P., et al., Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 2006. 103(24): p. 9001-9005.
6. Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annual review of biochemistry, 2009. 78: p. 929-958.
7. Minns, R. and F. Steven, The collagen fibril organization in human articular cartilage. Journal of anatomy, 1977. 123(Pt 2): p. 437.
8. Winkler, M., et al., Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Investigative ophthalmology & visual science, 2013. 54(12): p. 7293-7301.
9. An, B., Y.-S. Lin, and B. Brodsky, Collagen interactions: Drug design and delivery. Advanced drug delivery reviews, 2016. 97: p. 69-84.
10. Chattopadhyay, S. and R.T. Raines, Collagen‐based biomaterials for wound healing. Biopolymers, 2014. 101(8): p. 821-833.
11. Rezvani Ghomi, E., et al., Collagen‐based biomaterials for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2021. 109(12): p. 1986-1999.
12. Ma, H., et al., 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta biomaterialia, 2018. 79: p. 37-59.
13. Yannas, I., et al., Biologically active collagen-based scaffolds: advances in processing and characterization. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1917): p. 2123-2139.
14. Zhang, D., et al., The development of collagen based composite scaffolds for bone regeneration. Bioactive materials, 2018. 3(1): p. 129-138.
15. Udhayakumar, S., et al., l-Arginine intercedes bio-crosslinking of a collagen–chitosan 3D-hybrid scaffold for tissue engineering and regeneration: in silico, in vitro, and in vivo studies. Rsc Advances, 2017. 7(40): p. 25070-25088.
16. Kannan, S., et al., The role of artificial intelligence and machine learning techniques: Race for covid-19 vaccine. Archives of Clinical Infectious Diseases, 2020. 15(2).
17. Ong, E., et al., COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Frontiers in immunology, 2020. 11: p. 1581.
18. Burbidge, R., et al., Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & chemistry, 2001. 26(1): p. 5-14.
19. Gertrudes, J.C., et al., Machine learning techniques and drug design. Current medicinal chemistry, 2012. 19(25): p. 4289-4297.
20. Rao, S.S., The finite element method in engineering. 2017: Butterworth-heinemann.
21. Reddy, J.N., Introduction to the finite element method. 2019: McGraw-Hill Education.
22. Hansson, T., C. Oostenbrink, and W. van Gunsteren, Molecular dynamics simulations. Current opinion in structural biology, 2002. 12(2): p. 190-196.
23. Hollingsworth, S.A. and R.O. Dror, Molecular dynamics simulation for all. Neuron, 2018. 99(6): p. 1129-1143.
24. Karplus, M. and G.A. Petsko, Molecular dynamics simulations in biology. Nature, 1990. 347: p. 631-639.
25. Wei, J., et al., Machine learning in materials science. InfoMat, 2019. 1(3): p. 338-358.
26. Zhou, Q., et al., Property-oriented material design based on a data-driven machine learning technique. The journal of physical chemistry letters, 2020. 11(10): p. 3920-3927.
27. Weiner, S. and H.D. Wagner, The material bone: structure-mechanical function relations. Annual review of materials science, 1998. 28(1): p. 271-298.
28. Suo, H., et al., Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Materials Science and Engineering: C, 2021. 123: p. 111963.
29. Allan, B., et al., Collagen membrane for guided bone regeneration in dental and orthopedic applications. Tissue Engineering Part A, 2021. 27(5-6): p. 372-381.
30. Verma, A.K., Collagen-Based Biomaterial as Drug Delivery Module. Collagen Biomaterials.
31. Avila Rodríguez, M.I., L.G. Rodríguez Barroso, and M.L. Sánchez, Collagen: A review on its sources and potential cosmetic applications. Journal of cosmetic dermatology, 2018. 17(1): p. 20-26.
32. Brodsky, B., et al., Triple‐helical peptides: An approach to collagen conformation, stability, and self‐association. Biopolymers: Original Research on Biomolecules, 2008. 89(5): p. 345-353.
33. Li, M.H., et al., Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly) 10 and a designed collagen triple-helical peptide. Biochemistry, 1993. 32(29): p. 7377-7387.
34. Punitha, V., et al., Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen. The Journal of Physical Chemistry B, 2009. 113(26): p. 8983-8992.
35. Raman, S.S., et al., A molecular dynamics analysis of ion pairs formed by lysine in collagen: Implication for collagen function and stability. Journal of Molecular Structure: THEOCHEM, 2008. 851(1-3): p. 299-312.
36. Bornstein, P. and H. Sage, Structurally distinct collagen types. Annual review of biochemistry, 1980. 49(1): p. 957-1003.
37. Gordon, M.K. and R.A. Hahn, Collagens. Cell and tissue research, 2010. 339(1): p. 247.
38. Gudmann, N. and M. Karsdal, Type II collagen, in Biochemistry of collagens, laminins and elastin. 2016, Elsevier. p. 13-20.
39. Nielsen, M. and M.A. Karsdal, Type III collagen, in Biochemistry of Collagens, Laminins and Elastin. 2016, Elsevier. p. 21-30.
40. Ljubimov, A.V., et al., Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Laboratory investigation; a journal of technical methods and pathology, 1995. 72(4): p. 461-473.
41. Wilson, S.E., et al., Corneal fibroblast collagen type IV negative feedback modulation of TGF beta: A fibrosis modulating system likely active in other organs. Matrix Biology, 2022.
42. Minary-Jolandan, M. and M.-F. Yu, Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules, 2009. 10(9): p. 2565-2570.
43. Gupta, H.S., et al., Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences, 2006. 103(47): p. 17741-17746.
44. Sherman, V.R., W. Yang, and M.A. Meyers, The materials science of collagen. Journal of the mechanical behavior of biomedical materials, 2015. 52: p. 22-50.
45. Nair, A.K., et al., Molecular mechanics of mineralized collagen fibrils in bone. Nature communications, 2013. 4(1): p. 1724.
46. Hart, N.H., et al., Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. Journal of musculoskeletal & neuronal interactions, 2017. 17(3): p. 114.
47. Liu, Y., D. Luo, and T. Wang, Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016. 12(34): p. 4611-4632.
48. Sarkar, S.D., et al., Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2013. 101(12): p. 3482-3492.
49. Asran, A.S., S. Henning, and G.H. Michler, Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer, 2010. 51(4): p. 868-876.
50. Ravoor, J., M. Thangavel, and R. Elsen S, Comprehensive review on design and manufacturing of bio-scaffolds for bone reconstruction. ACS Applied Bio Materials, 2021. 4(12): p. 8129-8158.
51. Gaspar-Pintiliescu, A., A.-M. Stanciuc, and O. Craciunescu, Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. International journal of biological macromolecules, 2019. 138: p. 854-865.
52. Nair, M., et al., Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds. Applied Physics Reviews, 2021. 8(4): p. 041403.
53. Lisman, T., et al., Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology, 2006. 44(1): p. 53-61.
54. Lisman, T., et al., A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood, 2006. 108(12): p. 3753-3756.
55. Robins, S., Biochemistry and functional significance of collagen cross-linking. Biochemical Society Transactions, 2007. 35(5): p. 849-852.
56. Eyre, D.R., M.A. Paz, and P.M. Gallop, Cross-linking in collagen and elastin. Annual review of biochemistry, 1984. 53(1): p. 717-748.
57. Tierney, C.M., et al., The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the mechanical behavior of biomedical materials, 2009. 2(2): p. 202-209.
58. Snedeker, J.G. and A. Gautieri, The role of collagen crosslinks in ageing and diabetes-the good, the bad, and the ugly. Muscles, ligaments and tendons journal, 2014. 4(3): p. 303.
59. Depalle, B., et al., The different distribution of enzymatic collagen cross-links found in adult and children bone result in different mechanical behavior of collagen. Bone, 2018. 110: p. 107-114.
60. Buehler, M.J., Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. Journal of the mechanical behavior of biomedical materials, 2008. 1(1): p. 59-67.
61. Depalle, B., et al., Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Journal of the mechanical behavior of biomedical materials, 2015. 52: p. 1-13.
62. Francis-Sedlak, M.E., et al., Characterization of type I collagen gels modified by glycation. Biomaterials, 2009. 30(9): p. 1851-1856.
63. Fu, M.-X., et al., Glycation, glycoxidation, and cross-linking of collagen by glucose: kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes, 1994. 43(5): p. 676-683.
64. Van Nguyen, C., Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food‐AGEs and biological‐AGEs. Molecular nutrition & food research, 2006. 50(12): p. 1140-1149.
65. Li, Y., et al., Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biology, 2013. 32(3-4): p. 169-177.
66. Bourne, J.W., J.M. Lippell, and P.A. Torzilli, Glycation cross-linking induced mechanical–enzymatic cleavage of microscale tendon fibers. Matrix Biology, 2014. 34: p. 179-184.
67. Kwansa, A.L., R. De Vita, and J.W. Freeman, Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophysical chemistry, 2016. 214: p. 1-10.
68. Nash, A., et al., Lysine–arginine advanced glycation end‐product cross‐links and the effect on collagen structure: A molecular dynamics study. Proteins: Structure, Function, and Bioinformatics, 2021. 89(5): p. 521-530.
69. Depalle, B., et al., Large deformation mechanisms, plasticity, and failure of an individual collagen fibril with different mineral content. Journal of Bone and Mineral Research, 2016. 31(2): p. 380-390.
70. Sheu, Y., L.-H. Chen, and H. Hedegaard, Sports-and Recreation-related Injury Episodes in the United States, 2011-2014. National health statistics reports, 2016(99): p. 1-12.
71. Emery, C.A., et al., The “shred injuries basketball” neuromuscular training warm-up program reduces ankle and knee injury rates by 36% in youth basketball. journal of orthopaedic & sports physical therapy, 2022. 52(1): p. 40-48.
72. Barboza, S.D., et al., A warm-up program to reduce injuries in youth field hockey players: a Quasi-Experiment. Journal of athletic training, 2019. 54(4): p. 374-383.
73. Park, D.Y., et al., Influence of stretching and warm-up on Achilles tendon material properties. Foot & Ankle International, 2011. 32(4): p. 407-413.
74. Leikina, E., et al., Type I collagen is thermally unstable at body temperature. Proceedings of the National Academy of Sciences, 2002. 99(3): p. 1314-1318.
75. Madhavi, W.M., et al., Structure and dynamics of collagen hydration water from molecular dynamics simulations: implications of temperature and pressure. The Journal of Physical Chemistry B, 2019. 123(23): p. 4901-4914.
76. Van Dijk, F. and D. Sillence, Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. American journal of medical genetics Part A, 2014. 164(6): p. 1470-1481.
77. Lee, K.-H., K. Kuczera, and M.M.B. Holl, Effect of osteogenesis imperfecta mutations on free energy of collagen model peptides: A molecular dynamics simulation. Biophysical Chemistry, 2011. 156(2-3): p. 146-152.
78. Gautieri, A., et al., Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains. Protein Science, 2009. 18(1): p. 161-168.
79. Gautieri, A., et al., Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophysical Journal, 2009. 97(3): p. 857-865.
80. Kwon, J. and H. Cho, Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization. Communications Biology, 2022. 5(1): p. 1229.
81. Xiao, J., et al., Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease Osteogenesis Imperfecta resulting from Gly mutations. Journal of structural biology, 2015. 192(1): p. 127-137.
82. Bodian, D.L., et al., Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry, 2008. 47(19): p. 5424-5432.
83. Budsamongkol, T., et al., A novel mutation in COL1A2 leads to osteogenesis imperfecta/Ehlers-Danlos overlap syndrome with brachydactyly. Genes & Diseases, 2019. 6(2): p. 138-146.
84. Luo, C. and J.-U. Sommer, Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization. Computer Physics Communications, 2009. 180(8): p. 1382-1391.
85. Srinivas, G., D.E. Discher, and M.L. Klein, Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature materials, 2004. 3(9): p. 638-644.
86. Choi, Y.K., et al., CHARMM-GUI polymer builder for modeling and simulation of synthetic polymers. Journal of chemical theory and computation, 2021. 17(4): p. 2431-2443.
87. Siuda, I. and D.P. Tieleman, Molecular models of nanodiscs. Journal of chemical theory and computation, 2015. 11(10): p. 4923-4932.
88. Marrink, S.J., A.H. De Vries, and A.E. Mark, Coarse grained model for semiquantitative lipid simulations. The Journal of Physical Chemistry B, 2004. 108(2): p. 750-760.
89. Keasler, S.J., et al., Transferable potentials for phase equilibria–united atom description of five-and six-membered cyclic alkanes and ethers. The Journal of Physical Chemistry B, 2012. 116(36): p. 11234-11246.
90. Reith, D., M. Pütz, and F. Müller‐Plathe, Deriving effective mesoscale potentials from atomistic simulations. Journal of computational chemistry, 2003. 24(13): p. 1624-1636.
91. Shinoda, W., R. DeVane, and M.L. Klein, Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Molecular Simulation, 2007. 33(1-2): p. 27-36.
92. Kuo, A.-T., S. Okazaki, and W. Shinoda, Transferable coarse-grained model for perfluorosulfonic acid polymer membranes. The Journal of Chemical Physics, 2017. 147(9): p. 094904.
93. Si, D., et al., Artificial intelligence advances for de novo molecular structure modeling in cryo‐electron microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022. 12(2): p. e1542.
94. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
95. Baek, M., et al., Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021. 373(6557): p. 871-876.
96. Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 2018. 46(W1): p. W296-W303.
97. Swenson, N., et al., PersGNN: applying topological data analysis and geometric deep learning to structure-based protein function prediction. arXiv preprint arXiv:2010.16027, 2020.
98. Gligorijević, V., et al., Structure-based protein function prediction using graph convolutional networks. Nature communications, 2021. 12(1): p. 3168.
99. Chiang, Y., W.-H. Hui, and S.-W. Chang, Encoding protein dynamic information in graph representation for functional residue identification. Cell Reports Physical Science, 2022. 3(7): p. 100975.
100. Yao, H., J. Guan, and T. Liu, Denoising protein–protein interaction network via variational graph auto-encoder for protein complex detection. Journal of Bioinformatics and Computational Biology, 2020. 18(03): p. 2040010.
101. Yuan, Q., et al., Structure-aware protein–protein interaction site prediction using deep graph convolutional network. Bioinformatics, 2022. 38(1): p. 125-132.
102. Pham, T.T.A., et al., Deep learning for analysis of collagen fiber organization in scar tissue. IEEE Access, 2021. 9: p. 101755-101764.
103. Pellicer-Valero, O.J., et al., Real-time biomechanical modeling of the liver using machine learning models trained on finite element method simulations. Expert Systems with Applications, 2020. 143: p. 113083.
104. Madani, A., et al., Bridging finite element and machine learning modeling: stress prediction of arterial walls in atherosclerosis. Journal of biomechanical engineering, 2019. 141(8).
105. Yu, C.-H., et al., ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. Journal of the mechanical behavior of biomedical materials, 2022. 125: p. 104921.
106. Khare, E., et al., Discovering design principles of collagen molecular stability using a genetic algorithm, deep learning, and experimental validation. Proceedings of the National Academy of Sciences, 2022. 119(40): p. e2209524119.
107. Sutmann, G., Classical molecular dynamics. 2002, John von Neumann Institute for Computing, Jülich. p. 211-254.
108. Prins, J.F., et al., A virtual environment for steered molecular dynamics. Future Generation Computer Systems, 1999. 15(4): p. 485-495.
109. Brooks, B.R., et al., CHARMM: the biomolecular simulation program. Journal of computational chemistry, 2009. 30(10): p. 1545-1614.
110. Jo, S., et al., CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of computational chemistry, 2008. 29(11): p. 1859-1865.
111. Peters, M.E., et al., Deep contextualized word representations. arXiv. arXiv, 1802.
112. Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
113. Vaswani, A., et al., Attention is all you need. Advances in neural information processing systems, 2017. 30.
114. Brandes, N., et al., ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics, 2022. 38(8): p. 2102-2110.
115. Zhang, M., G. Geng, and J. Chen, Semi-supervised bidirectional long short-term memory and conditional random fields model for named-entity recognition using embeddings from language models representations. Entropy, 2020. 22(2): p. 252.
116. Botev, Z.I., et al., The cross-entropy method for optimization, in Handbook of statistics. 2013, Elsevier. p. 35-59.
117. Kochenderfer, M.J., T.A. Wheeler, and K.H. Wray, Algorithms for decision making. 2022: MIT press.
118. Zhou, J., et al., Graph neural networks: A review of methods and applications. AI open, 2020. 1: p. 57-81.
119. Xiao, S., et al., Graph neural networks in node classification: survey and evaluation. Machine Vision and Applications, 2022. 33: p. 1-19.
120. Zhang, M. and Y. Chen, Link prediction based on graph neural networks. Advances in neural information processing systems, 2018. 31.
121. Müller, E., Graph clustering with graph neural networks. Journal of Machine Learning Research, 2023. 24: p. 1-21.
122. Bruna, J. and X. Li, Community detection with graph neural networks. stat, 2017. 1050: p. 27.
123. Li, B., et al., Differentiation of pancreatic ductal adenocarcinoma and chronic pancreatitis using graph neural networks on histopathology and collagen fiber features. Journal of Pathology Informatics, 2022. 13: p. 100158.
124. Kipf, T.N. and M. Welling, Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
125. Selvaraju, R.R., et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE international conference on computer vision. 2017.
126. Kingma, D.P. and M. Welling, An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 2019. 12(4): p. 307-392.
127. Bank, D., N. Koenigstein, and R. Giryes, Autoencoders. arXiv preprint arXiv:2003.05991, 2020.
128. Chen, T., et al., Xgboost: extreme gradient boosting. R package version 0.4-2, 2015. 1(4): p. 1-4.
129. Jiang, J., et al., Predictive model for the 5-year survival status of osteosarcoma patients based on the SEER database and XGBoost algorithm. Scientific reports, 2021. 11(1): p. 5542.
130. Vanommeslaeghe, K., et al., CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of computational chemistry, 2010. 31(4): p. 671-690.
131. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38.
132. Orgel, J., J. San Antonio, and O. Antipova, Molecular and structural mapping of collagen fibril interactions. Connective tissue research, 2011. 52(1): p. 2-17.
133. Gautieri, A., et al., Age-and diabetes-related nonenzymatic crosslinks in collagen fibrils: candidate amino acids involved in advanced glycation end-products. Matrix Biology, 2014. 34: p. 89-95.
134. Thompson, A.P., et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022. 271: p. 108171.
135. Hui, W.-H., Y.-L. Chen, and S.-W. Chang, Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity 2023.
136. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-1802.
137. Kjaer, M., et al., Exercise and regulation of bone and collagen tissue biology. Progress in Molecular Biology and Translational Science, 2015. 135: p. 259-291.
138. Hui, W.-H., et al., Unraveling the molecular mechanism of collagen flexibility during physiological warmup using molecular dynamics simulation and machine learning. Computational and Structural Biotechnology Journal, 2023. 21: p. 1630-1638.
139. Bella, J., B. Brodsky, and H.M. Berman, Hydration structure of a collagen peptide. Structure, 1995. 3(9): p. 893-906.
140. Hall, K.W., et al., A coarse-grain model for entangled polyethylene melts and polyethylene crystallization. The Journal of Chemical Physics, 2019. 150(24).
141. Moyassari, A., et al., Molecular dynamics simulations of short-chain branched bimodal polyethylene: Topological characteristics and mechanical behavior. Macromolecules, 2019. 52(3): p. 807-818.
142. Sliozberg, Y.R., M. Kröger, and T.L. Chantawansri, Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains. The Journal of chemical physics, 2016. 144(15).
143. Paul, W., D.Y. Yoon, and G.D. Smith, An optimized united atom model for simulations of polymethylene melts. The Journal of chemical physics, 1995. 103(4): p. 1702-1709.
144. Ramos, J., J.F. Vega, and J. Martinez-Salazar, Molecular dynamics simulations for the description of experimental molecular conformation, melt dynamics, and phase transitions in polyethylene. Macromolecules, 2015. 48(14): p. 5016-5027.
145. Martin, M.G. and J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B, 1998. 102(14): p. 2569-2577.
146. Ramos, J., L.D. Peristeras, and D.N. Theodorou, Monte Carlo simulation of short chain branched polyolefins in the molten state. Macromolecules, 2007. 40(26): p. 9640-9650.
147. Karayiannis, N.C., et al., Atomistic Monte Carlo simulation of strictly monodisperse long polyethylene melts through a generalized chain bridging algorithm. The Journal of chemical physics, 2002. 117(11): p. 5465-5479.
148. Karayiannis, N.C., V.G. Mavrantzas, and D.N. Theodorou, A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. Physical review letters, 2002. 88(10): p. 105503.
149. Dodd, L. and D. Theodorou, Atomistic Monte Carlo simulation and continuum mean field theory of the structure and equation of state properties of alkane and polymer melts. Atomistic modeling of physical properties, 2006: p. 249-281.
150. Foteinopoulou, K., et al., Structure, dimensions, and entanglement statistics of long linear polyethylene chains. The Journal of Physical Chemistry B, 2009. 113(2): p. 442-455.
151. Fukunaga, H., J.-i. Takimoto, and M. Doi, A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions. The Journal of chemical physics, 2002. 116(18): p. 8183-8190.
152. Ramos, J., et al., Entanglement relaxation time in polyethylene: Simulation versus experimental data. Macromolecules, 2008. 41(8): p. 2959-2962.
153. Pearson, D., et al., Viscosity and self-diffusion coefficient of linear polyethylene. Macromolecules, 1987. 20(5): p. 1133-1141.
154. Salerno, K.M. and N. Bernstein, Persistence length, end-to-end distance, and structure of coarse-grained polymers. Journal of Chemical Theory and Computation, 2018. 14(4): p. 2219-2229.
155. Yamamoto, T., Molecular dynamics simulations of polymer crystallization in highly supercooled melt: Primary nucleation and cold crystallization. The Journal of Chemical Physics, 2010. 133(3).
156. Ramachandran, R., et al., Persistence length of short-chain branched polyethylene. Macromolecules, 2008. 41(24): p. 9802-9806.
157. Rešček, A., et al., Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein. Croatica Chemica Acta, 2015. 88(4): p. 461-473.
158. Sichina, W., DSC as problem solving tool: measurement of percent crystallinity of thermoplastics. Perkin Elmer Instruments, and PETech, 2000. 40.
159. Brandrup, J.I., EH; Grulke, EA, 1999. Polymer handbook, ed. Wiley Interscience Publication,(New York, USA) Chap. 2: p. 181-308.
160. Grigorescu, R.M., et al., Waste electrical and electronic equipment: a review on the identification methods for polymeric materials. Recycling, 2019. 4(3): p. 32.
161. Rozanski, A., M. Safandowska, and A. Krajenta, DSC/SAXS analysis of the thickness of lamellae of semicrystalline polymers-restrictions in the case of materials with swollen amorphous phase. Polymer Testing, 2018. 65: p. 189-196.
162. Myllyharju, J. and K.I. Kivirikko, Collagens and collagen-related diseases. Annals of medicine, 2001. 33(1): p. 7-21.
163. Ianiro, A., et al., Block copolymer hierarchical structures from the interplay of multiple assembly pathways. Polymer Chemistry, 2020. 11(13): p. 2305-2311.
164. Chen, C., M. Dirican, and X. Zhang, Centrifugal Spinning—High Rate Production of Nanofibers, in Electrospinning: Nanofabrication and Applications. 2019, Elsevier. p. 321-338.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90037-
dc.description.abstract膠原蛋白在人體中是重要的蛋白質之一,並且佔身體中蛋白質組成的三分之 一,主要的分佈在締結組織如骨頭、軟骨、肌腱、皮膚和角膜等等。由於締結組織 多為多層結構,從微觀尺度了解膠原蛋白分子的結構、分子間作用力以及力學性質 對於我們了解組織是如何運作是相當重要的。此外,膠原蛋白在人體中的提供優異 的機械特性,近年來也被運用在許多的生物醫學材料當中,膠原蛋白對人體高度的 生物相容以及可塑形的特性被應用在許多創傷修復支架中。
此外,近年來不管在材料開發和製程中,理論、模擬以及機器學習的幫助加入 了新穎材料開發的進程。透過理論以及模擬的方法減少材料開發和製程的所需的 時間以及材料。實驗以及模擬的龐大資料,經由機器學學習不管在分類或是性質預 測都是相當優異的。另外,也可以藉由機器學習的模型找出更優異材料組成作為開 發新穎材料的重要指標。
本研究的方向會分為膠原蛋白組織的性質研究以及粗粒最佳化。膠原蛋白組 織的三個效應:交聯、溫度效應以及突變進行討論。交聯效應以模擬的方法探討正 常、老化和疾病等交聯狀況對膠原蛋白纖維之影響,並提出上述之變形機制。溫度 效應以模擬的方法研究膠原蛋白分子對溫度的敏感程度,從力學性質到分子結構 的分析了解溫度造成的效應,此外利用機器學習的方法建立應變預測模型提供序 列的變形預測。突變效應主要討論成骨不全症的致死的預測,並建立表現更優異的 預測模型提供未來診斷之輔助。透過模擬的方法針對膠原蛋白的微觀進行探討,更 加瞭解上述效應在分子尺度下的影響,並藉由機器學習的方法建立預測模型以提 供未來新穎材料設計的想法。粗粒最佳化以逆波茲曼法為啟發,結合交叉熵最佳化 方法發展出多目標最佳化的映射粗粒化模型的方法。此外,粗粒化的模型以及參數 化的能量描述讓複雜的系統簡單化,除了放大模型尺度以及降低計算量外也提供 方法建立複合高分子材料之模型。
zh_TW
dc.description.abstractCollagen is one of the most important proteins in the human body, comprising one- third of the body's protein composition. It is mainly distributed in connective tissues such as bones, cartilage, tendons, skin, and corneas. Understanding the structure, molecular interactions, and mechanical properties of collagen molecules at the microscale is crucial for understanding how tissues function. Collagen's excellent mechanical properties have been utilized in many biomedical materials, particularly in wound repair scaffolds, due to its high biocompatibility and pliability. In recent years, theoretical, simulation, and machine learning methods have been incorporated into novel material development processes, reducing the time and materials required. Machine learning has proven to be a powerful tool for classification and property prediction, which serves as a perfect fit for studying immense data generated from experiments and simulations. Moreover, machine learning models can furtherly identify superior material compositions, which could be a vital indicator for material development.
This study focused on two research directions: the study of collagen tissue properties and coarse-grained optimization. We discussed three main effects on collagen tissue: crosslinking, thermal effects, and mutations. The cross-linking effect was investigated using simulation methods to explore the influence of normal, aging, and diseased crosslinking on collagen fibers and propose deformation mechanisms. The thermal effect was studied using simulation methods to investigate the sensitivity of collagen molecules to temperature, from mechanical properties to molecular structural analysis, and establish a strain prediction model using machine learning methods. The mutation effect mainly discussed the main lethal features of osteogenesis imperfecta and established a more accurate predictive model to assist future diagnosis. By exploring collagen at the molecular level through simulation methods and building predictive models using machine learning methods, we can understand the above effects and provide ideas for future novel material designs. The coarse-grained optimization was inspired by the Boltzmann Inverse method and combined with the cross-entropy method for optimization to develop a method for multi-objective optimization of the mapping coarse-grained model. The coarse-grained model and parameterized energy description simplify complex systems, providing a method to establish models for composite polymer materials and scaling up the model size, and reducing computational costs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:09:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:09:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
Abstract iii
圖目錄 viii
表目錄 xv
第1章、 緒論 1
1.1 背景介紹 1
1.2 文獻回顧 3
1.2.1 膠原蛋白的背景介紹 3
1.2.2 膠原蛋白與高分子之複合材料 4
1.2.3 交聯對於膠原蛋白之重要性 6
1.2.4 溫度對於膠原蛋白之重要性 7
1.2.5 突變對於膠原蛋白之重要性 8
1.2.6 全原子模型映射成粗粒模型之方法 10
1.2.7 機器學習在蛋白質領域上的研究發展 11
1.3 論文目的 14
1.4 論文方向 15
第2章、 理論與方法 16
2.1 分子動力模擬 (Molecular dynamics, MD) 16
2.1.1 分子動力模擬理論 16
2.1.2 拉伸分子動力模擬 (Steered molecular dynamics, SMD) 17
2.2 生物分子力場描述 (Force Field) 17
2.3 逆波茲曼法(Boltzmann inversion method, BIm) 19
2.4 嵌入 (Embedding) 20
2.4.1 嵌入式語言模型(Embedding from Language Model, ELMo) 20
2.4.2 基於變換器的雙向編碼器表示技術(Bidirectional Encoder Representations from Transformers, BERT) 21
2.5 交叉熵最佳化方法(Cross-entropy method for optimization, CEm) 22
2.6 圖神經網絡 (Graph Neural Network, GNN) 23
2.6.1 圖卷積網路(Graph Convolutional Networks, GCN) 23
2.6.2 梯度權重類別活化映射(Gradient-weighted Class Activation Mapping, Grad-CAM) 23
2.7 自變分編碼器(Variational Auto-Encoder, VAE) 24
2.8 極限梯度上升(eXtreme Gradient Boosting, XGBoost) 25
2.9 對應各章節所使用之方法與理論 25
第3章、 交聯對膠原蛋白對變形機制的影響 26
3.1 模型建立以及模擬流程 26
3.2 交聯在纖維尺度下的影響 28
3.2.1 交聯對膠原蛋白纖維的變形分佈改變 28
3.2.2 滑動以及分子伸長的比例 30
3.3 交聯在分子尺度下的影響 31
3.3.1 分子結構上的影響 31
3.3.2 影響生物訊號的可能性 33
3.4 結果與討論 35
第4章、 膠原蛋白的溫度效應和序列的熱性質預測 37
4.1 模型建立以及模擬過程 37
4.2 膠原蛋白分子受熱的性質變化 38
4.2.1 在力學表現上的影響 38
4.2.2 在分子結構上的影響 41
4.3 利用機器學習預測序列在313K時的拉伸應變 46
4.3.1 模型架構 46
4.3.2 預測效能 47
4.4 結果與討論 49
第5章、 膠原蛋白的成骨不全症的致死風險預測 51
5.1 資料集以及實驗設計 51
5.1.1 資料分析 51
5.1.2 測試資料集以及測試模型 53
5.2 建立成骨不全致死風險預測模型以及分析 53
5.2.1 模型架構以及參數設置 53
5.2.2 模型預測表現 55
5.2.3 模型分類表現 60
5.2.4 Grad-CAM的特徵分析 61
5.2.5 預測未知資料 71
5.3 結果與討論 72
第6章、 基於逆波茲曼法之多目標最佳化 73
6.1 架構以及流程 73
6.1.1 全原子模型模擬 73
6.1.2 Cross Entropy-Boltzmann Inversion method (CE-BIm) 架構 74
6.2 聚乙烯粗粒化 76
6.2.1 全原子模型平衡 76
6.2.2 使用CE-BIm映射至粗粒模型 76
6.2.3 驗證與比較 80
6.3 結果與討論 84
第7章、 結論與未來展望 85
7.1 總結 85
7.2 未來展望 87
參考資料 89
-
dc.language.isozh_TW-
dc.subject膠原蛋白zh_TW
dc.subject機器學習zh_TW
dc.subject逆波茲曼法zh_TW
dc.subject高分子複合材料zh_TW
dc.subject成骨不全症zh_TW
dc.subject溫度效應zh_TW
dc.subject交聯zh_TW
dc.subjectCrosslinken
dc.subjectCollagenen
dc.subjectMachine Learningen
dc.subjectBoltzmann Inversion methoden
dc.subjectOsteogenesis imperfectaen
dc.subjectPolymer composite materialen
dc.subjectTemperature effecten
dc.title結合分子模擬與機器學習預測膠原蛋白分子與高分子之力學特性與突變表現zh_TW
dc.titlePredicting the Mechanical Properties and Mutational Effects of Collagen Molecules and Polymers by Combining Molecular Simulations and Machine Learningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳俊杉;韓仁毓;游佳欣;游濟華;洪子倫;沈立軒zh_TW
dc.contributor.oralexamcommitteeChuin-Shan Chen;Jen-Yu Han;Jia-shing Yu;Chi-Hua Yu;Tzyy-Leng Horng;Li-Hsuan Shenen
dc.subject.keyword膠原蛋白,交聯,溫度效應,成骨不全症,高分子複合材料,逆波茲曼法,機器學習,zh_TW
dc.subject.keywordCollagen,Crosslink,Temperature effect,Osteogenesis imperfecta,Polymer composite material,Boltzmann Inversion method,Machine Learning,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202304121-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved