請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90030
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱美妃 | zh_TW |
dc.contributor.advisor | Mei-Fei Chu | en |
dc.contributor.author | 許庭慈 | zh_TW |
dc.contributor.author | Ting-Cih Syu | en |
dc.date.accessioned | 2023-09-22T17:07:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | 大江二郎 (1939) 台東圖幅及說明書(十萬分之一)。臺灣總督府殖產局出版第608號,共26頁。
王源、楊昭男、陳文山 (1992) 玉里圖幅與說明書,五萬分之一臺灣地質圖第48號。經濟部中央地質調查所,共81頁。 王源、陳文山 (1993) 海岸山脈地質圖幅(十萬分之一)。經濟部中央地質調查所出版。 宇佐美衛 (1939a) 花蓮圖幅說明書(五萬分之一)。臺灣總督府殖產局出版第863號。 李政熹 (2021) 海岸山脈秀姑巒溪剖面八里灣層之鋯石及磷灰石核飛跡定年研究 探討源區山脈的剝蝕演化。國立臺灣大學地質科學研究所碩士論文,共166頁。 李德貴、紀文榮 (1990) 海岸山脈沈積岩地層的古地磁年代。經濟部中央地質調查所特刊,第4號,第271-294頁。 何春蓀 (1986) 臺灣地質概論(第二版)。經濟部中央地質調查所出版,共164頁。 杲紹伊 (2020)從晚中新世里龍山層磷灰石核飛跡定年研究探討恆春半島隆起的起始年代。國立臺灣大學地質科學研究所碩士論文,共145頁。 周南 (1993) 海岸山脈沉積岩鋯石核飛跡定年研究。國立臺灣海洋大學海洋科學研究所碩士論文,共99頁。 周南與劉聰桂 (1997) 核飛跡(FT)定年法。地質,第16卷,第97-111頁。 紀權窅 (2007) 南段花東縱谷斷層之新期構造研究–利吉斷層與鹿野斷層的活動特性。國立臺灣大學地質科學研究所碩士論文,共84頁。 徐士捷(2017)晚中新世以來沉積岩岩象分析探討臺灣南部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共145頁。 徐鐵良 (1956) 臺灣東部海岸山脈地質。臺灣省地質調查所彙刊,8號,第15-41頁。 張宏浩 (2018) 海岸山脈南段泰源盆地之有機地化特徵。國立中央大學應用地質研究所碩士論文,共96頁。 陳文山 (1988) 台灣海岸山脈沈積盆地之演化及其在地體構造上之意義。國立台灣大學地質科學研究所博士論文,共344頁。 陳文山 (2009) 海岸山脈火山島弧與碰撞盆地的地層架構與年代。西太平洋地質科學,第9卷,第67-98 頁。 陳文山 (2020) 海岸山脈火山弧與前陸盆地之層序架構。經濟部中央地質調查所彙刊,第33號,第83-95頁。 陳文山、王源 (1996) 台灣東部海岸山脈地質。經濟部中央地質調查所,台灣地質系列,第7號。 陳文山、方中權、劉力豪、楊小青、顏一勤、黃能偉、楊志成、陳勇全、龔慧敏、賴慈華、費立沅 (2006) 台灣地區上新世至全新世的沉積同時變形構造-地震岩的沉積環境。西太平洋地質科學,第6卷,第191-220頁。 陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍 (2016) 台灣地質概論。社團法人中華民國地質學會出版,共204 頁。 陳立凱 (2019) 弧前盆地埋藏訊號以及造山帶剝蝕訊號-以東部海岸山脈為例。國立中央大學地球科學系博士論文,共163頁。 陳彤軒 (2021) 利用水璉礫岩的砂岩與礫石之核飛跡定年研究探討上-更新世脊樑山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共123 頁。 陳肇夏、王京新 (1995)台灣變質相圖說明書,第二版。經濟部中央地質調查所特刊,第2 期,共51 頁。 曹恕中、樓望東、何信昌、李元希、江威德、陳正宏 (1996) 台灣中央山脈變質泥岩鉀氬年代之地質意義。經濟部中央地質調查所彙刊,第11號,第37-84頁。 黃奕彰 (2015) 利用碎屑鋯石鈾鉛定年探討大南澳片岩的地層年代與構造演化。國立台灣大學地質科學研究所碩士論文,共199頁。 葉家志 (2017) 晚中新世以來沉積岩岩象分析探討臺灣中北部山脈剝蝕歷史。國立臺灣大學地質科學研究所碩士論文,共104頁。 劉丞浩 (2013) 大南澳片岩太魯閣帶的碎屑鋯石鈾鉛定年研究。國立台灣大學地質科學所碩士論文,共142頁。 劉聰桂 (1982) 臺灣磷灰石、鋯石、榍石之核飛跡研究與其在大地構造上之意義。國立臺灣大學地質科學研究所博士論文,共95頁。 賴序衡與鄧屬予 (2016) 海岸山脈南段泰源盆地的地層與構造。經濟部中央地質調查所彙刊,第29號,第45-76頁。 Baziotis, I., Tsai, C. H., Ernst, W. G., Jahn, B. M., & Iizuka, Y. (2017) New P–T constraints on the Tamayen glaucophane-bearing rocks, eastern Taiwan: Perple_X modelling results and geodynamic implications. Journal of Metamorphic Geology, 35(1), 35-54. doi: https://doi.org/10.1111/jmg.12218 Bernet, M. (2019). Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. Fission-track thermochronology and its application to geology, 269-277. Bernet, M., & Garver, J. I. (2005) Fission-track Analysis of Detrital Zircon. Reviews in Mineralogy and Geochemistry, 58(1), 205-237. doi: 10.2138/rmg.2005.58.8 Bernet, M., Zattin, M., Garver, J. I., Brandon, M. T., & Vance, J. A. (2001) Steady-state exhumation of the European Alps. Geology, 29(1), 35-38. doi: https://doi.org/10.1130/0091-7613(2001)029<0035:Sseote>2.0.Co;2 Brandon, M. T. (2002) Decomposition of mixed grain age distributions using Binomfit. On track, 24(8), 13-18. Buchovecky, E. J., & Lundberg, N. (1988) Clay Mineralogy of Mudstones From the Southern Coastal Range, Eastern Taiwan: Unroofing of the Orogen Versus In-Situ Diagenesis. Acta geologica taiwanica, 26, 247-261. Chang, L. S. (1967) A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera. (I. Southern Part) Proceedings of the Geological Society of China, 10, 64-76. Chang, L. S. (1968) A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera.(II. Northern Part) Proceedings of the Geological Society of China, 11, 19-33. Chang, L. S. (1969) A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera.(III. Middle Part) Proceedings of the Geological Society of China, 12(89-101) Chen, C. H., Lee, C. Y., Tien, J. L., Xiang, H., Walia, M., & Lin, J. W. (2020) Post-orogenic thermal reset of the Pingtan-Dongshan metamorphic belt (SE China): Insights from zircon fission track and U-Pb double dating. Journal of Asian Earth Sciences, 201, 104512. doi: https://doi.org/10.1016/j.jseaes.2020.104512 Chen, T. W., Chu, M. F., Chen, W. S., Chung, S. L., Lee, H. Y., & Iizuka, Y. (2023) Retro‐Foredeep Basin Evolution in Taiwan: Zircon U‐Pb and Hf Isotope Constraints From the Coastal Range. Geochemistry, Geophysics, Geosystems, 24(3), e2022GC010787. doi: https://doi.org/10.1029/2022GC010787 Chen, W. S. (1997) Lithofacies analysis of the arc-related sequence in Coastal Range, eastern Taiwan. Journal of the Geological Society of China, 40. Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017) A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206. doi: https://doi.org/10.1002/2016TC004383 Chen, W. S., Huang, Y. C., Liu, C. H., Feng, H. T., Chung, S. L., & Lee, Y. H. (2016) UPb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 686, 68-81. doi: https://doi.org/10.1016/j.tecto.2016.07.021 Chen, W. S., & Wang, Y. (1988a) Volcaniclastic and biogenic sequence of the Tuluanshan Formation, Coastal Range, Taiwan. .Field Guide Book, 6, 1-6. Chen, W. S., & Wang, Y. (1988b) Development Of Deep-Sea Fan Systems In Coastal Range Basin, Eastern Taiwan. Science Reports of the National Taiwan University ACTA Geologica Taiwanica, 26, 37-56. Chen, W. S., Yeh, J. J., & Syu, S. J. (2019) Late Cenozoic exhumation and erosion of the Taiwan orogenic belt: New insights from petrographic analysis of foreland basin sediments and thermochronological dating on the metamorphic orogenic wedge. Tectonophysics, 750, 56-69. doi: https://doi.org/10.1016/j.tecto.2018.09.003 Chi, W. R., Huang, H. M., & Wu, J. (1983) Ages of the Milun and Pinanshan Conglomerates and their Bearings on the Quaternary movement of Eastern Taiwan. Proceedings of the Geological Society of China, 26, 67. Chi, W. R., Namson, J., & Mei, W. W. (1980) Calcareous Nannoplankton Biostratigraphy Of The Late Neogene Sediments Exposed Along The Hsiukuluanchi In The Coastal Range, Eastern Taiwan. Petroleum Geology of Taiwan, 17, 75-87. Chim, L. K., Yen, J. Y., Huang, S. Y., Liou, Y. S., & Tsai, L. L. Y. (2018) Using Raman spectroscopy of carbonaceous materials to track exhumation of an active orogenic belt: an example from eastern Taiwan. Journal of Asian Earth Sciences, 164, 248-259. doi: https://doi.org/10.1016/j.jseaes.2018.06.030 Deffontaines, B., Lee, J. C., Angelier, J., Carvalho, J., & Rudant, J. P. (1994) New geomorphic data on the active Taiwan orogen: a multisource approach. Journal of Geophysical Research: Solid Earth, 99(B10), 20243-20266. Dickinson, W. R., & Suczek, C. A. (1979) Plate Tectonics and Sandstone Compositions1. AAPG Bulletin, 63(12), 2164-2182. doi: https://doi.org/10.1306/2f9188fb-16ce-11d7- 8645000102c1865d Donelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. (2005) Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49-94. doi: https://doi.org/10.2138/rmg.2005.58.3 Dorsey, R. J. (1988) Provenance evolution and unroofing history of a modern arc-continent collision; evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan. Journal of Sedimentary Research, 58(2), 208-218. doi: https://doi.org/10.1306/212f8d5a-2b24-11d7-8648000102c1865d Dorsey, R. J., Buchovecky, E. J., & Lundberg, N. (1988) Clay mineralogy of Pliocene- Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing. Geology, 16(10), 944-947. doi: https://doi.org/10.1130/0091-7613(1988)016<0944:Cmoppm>2.3.Co;2 Dunkl, I. (2002) TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3-12. doi: https://doi.org/10.1016/S0098-3004(01)00024-3 Ernst, W. G. (1983) Mineral parageneses in metamorphic rocks exposed along Tailuko Gorge, Central Mountain Range, Taiwan. Journal of Metamorphic Geology, 1(4), 305-329. doi: https://doi.org/10.1111/j.1525-1314.1983.tb00277.x Fleischer, R.L., Price, P.B. and Walker, R.M. (1965a) Ion explosion spike mechanism for formation of charged particle tracks in solids. Journal of Applied Physics, 36, 3645-3652. doi: https://doi.org/10.1063/1.1703059 Fleischer, R., Price, P., & Walker, R. (1965b) Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. Journal of Geophysical Research, 70(6), 1497-1502. doi: https://doi.org/10.1029/JZ070i006p01497 Fleischer, R. L., Price, P. B., & Walker, R. M. (1975) Nuclear Tracks in Solids: Principles and Applications: University of California Press. Fuller, C. W., Willett, S. D., Fisher, D., & Lu, C. Y. (2006) A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425(1), 1-24. doi: https://doi.org/10.1016/j.tecto.2006.05.018 Galbraith, R. F., & Green, P. F. (1990) Estimating the component ages in a finite mixture. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3), 197-206. doi: https://doi.org/10.1016/1359-0189(90)90035-V Garver, J. I., Brandon, M. T., Roden-Tice, M., & Kamp, P. J. J. (1999) Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geological Society, London, Special Publications, 154(1), 283. doi: https://doi.org/10.1144/GSL.SP.1999.154.01.13 Geng, W., Zhang, X. H., & Huang, L. (2018) Arc-continent collision of the Coastal Range in Taiwan: Geochronological constraints from U-Pb ages of zircons. Journal of Marine Systems, 180, 182-190. doi:https://doi.org/10.1016/j.jmarsys.2016.11.014 Ghent, E. D., Stout, M. Z., and Parrish, R. R. (1988) Determination of metamorphic pressure-temperature-time (P-T-t) paths, in E.G. Nisbet and C.M.R. Fowler, eds., Heat, metamorphism and tectonics. Mineralogical Association of Canada Short Course, 14, 155-188. Gleadow A. J. W., Duddy I. R., Green P. F., and Lovering J. F. (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib. Mineral. Petrol., 94, 405- 415. Gleadow, A. J. W., & Lovering, J. F. (1978) Fission track geochronology of King Island, Bass Strait, Australia: Relationship to continental rifting. Earth and Planetary Science Letters, 37(3), 429-437. doi: https://doi.org/10.1016/0012-821X(78)90058-4 Graham, S. A., Tolson, R. B., DeCelles, P. G., Ingersoll, R., Bargar, E., Caldwell, L. M., Cavazza, W., Edwards, D. P., Follo, M. F., & Handschy, J. F. (1986) Provenance modeling as a technique for analyzing source terrane evolution and controls on foreland sedimentation. Foreland Basins, 8, 425-436. Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., & Laslett, G. M. (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nuclear Tracks and Radiation Measurements (1982), 10(3), 323-328. doi: https://doi.org/10.1016/0735-245X(85)90121-8 Ho, C. S. (1969) Geologic significance of potassium-argon ages of the Chimei Igneous Complex: Bulletin of Geological Survey, Taiwan, 20, 63-74. Hoffman, J., & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA. The Society of Economic Paleontologists and Mineralogists, 26, 55-79. Horng, C. S., & Shea, K. S. (1996) Dating of the Plio-Pleistocene rapidly deposited sequence based on integrated magneto-biostratigraphy: A case study of the Madagida-chi Section, Coastal Range, eastern Taiwan. Journal of the Geological Society of China, 39, 31-58. Hsieh, H.H., Chen, C.H., Lin, P.Y., Yen, H.Y. (2014) Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26-33. Hsu, W. H., Byrne, T. B., Ouimet, W., Lee, Y. H., Chen, Y. G., Soest, M. v., & Hodges, K. (2016) Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt. Geology, 44(9), 719-722. doi: https://doi.org/10.1130/g37914.1 Huang, S. Y., Lee, Y. H., Mesalles, L., Horng, C. S., Lu, H. Y., Tsai, Y. L., Wu, Y. J., Chen, F. Y. & Tan, X. B. (2022) Plio-Pleistocene fluvial dynamics in the pro-foreland basins of Taiwan: Thermochronological constraints and tectonic implications from the syn-orogenic deposits. Tectonophysics, 838, 229486. doi: https://doi.org/10.1016/j.tecto.2022.229486 Hurford, A. J., & Green, P. F. (1983) The zeta age calibration of fission-track dating. Chemical Geology, 41, 285-317. doi: https://doi.org/10.1016/S0009- 2541(83)80026-6 Juang, W. S., Bellon, H., (1984) The potassium-argon dating of andesites from Taiwan. Proceedings of the Geological Society of China, 27, 86-100. Kasuya, M., & Naeser, C. W. (1988) The effect of α-damage on fission-track annealing in zircon. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 14(4), 477-480. doi: https://doi.org/10.1016/1359-0189(88)90008-8 Kirstein, L. A., Carter, A., & Chen, Y. G. (2013) Impacts of arc collision on small orogens: new insights from the Coastal Range detrital record, Taiwan. Journal of the Geological Society, 171(1), 5-8. doi: https://doi.org/10.1144/jgs2013-046 Kirstein, L. A., Fellin, M. G., Willett, S. D., Carter, A., Chen, Y. G., Garver, J. I., & Lee, D. C. (2010) Pliocene onset of rapid exhumation inTaiwan during arc-continent collision: new insights from detrital thermochronometry. Basin Research, 22, 270-285. doi: https://doi.org/10.1111/j.1365-2117.2009.00426.x Krishnaswami, S., Lal, D., Prabhu, N., & Macdougall, D. (1974) Characteristics of fission tracks in zircon: applications to geochronology and cosmology. Earth and Planetary Science Letters, 22(1), 51-59. Lai, L. S. H., Dorsey, R. J., Horng, C. S., Chi, W. R., Shea, K. S., & Yen, J. Y. (2021) Polygenetic mélange in the retrowedge foredeep of an active arc-continent collision, Coastal Range of eastern Taiwan. Sedimentary Geology, 418, 105901. doi: https://doi.org/10.1016/j.sedgeo.2021.105901 Lan, C.Y. (1982) Mineralogy, petrology and hydrothermal alteration of the Chimei igneous complex, Hualien, Taiwan: MRSO Report, 193, 60. Lee, T. Q., Kissel, C., Barrier, E., Laj, C., & Chi, W. R. (1991) Paleomagnetic evidence for a diachronic clockwise rotation of the Coastal Range, eastern Taiwan. Earth and Planetary Science Letters, 104(2-4), 245-257. Lee, Y. H., Byrne, T. B., Lo, W., Wang, S. J., Tsao, S. J., Chen, C. H., Yu, H. C., Tan, X., Soest, M., Hodges, K., Mesalles, L., Robinson, H., & Fosdick, J. C. (2022) Out of sequence faulting in the backbone range, Taiwan: Implications for thickening and exhumation processes.Earth and Planetary Science Letters, 594, 117711. doi: https://doi.org/10.1016/j.epsl.2022.117711 Lee, Y. H., Chen, C. C., Liu, T. K., Ho, H. C., Lu, H. Y., & Lo, W. (2006) Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt—From accretionary wedge deformation to arc-continent collision. Earth and Planetary Science Letters - EARTH PLANET SCI LETT, 252, 413-422. doi: https://doi.org/10.1016/j.epsl.2006.09.047 Liew Y. C., & Lin C. C. (1974) Heavy mineral association in the Neogene formation of the southern part of Coastal Range, east Taiwan. Acta geologica taiwanica, 17, 23-36. Liu, T. K., Chen, Y. G., Chen, W. S., & Jiang, S. H. (2000) Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics, 320, 69-82. doi: https://doi.org/10.1016/S0040-1951(00)00028-7 Liu, T. K., Hsieh, S., Chen, Y. G., & Chen, W. S. (2001) Thermo-kinematic evolution of the Taiwan oblique-collision mountain belt as revealed by zircon fission track dating. Earth and Planetary Science Letters, 186(1), 45-56. doi: https://doi.org/10.1016/S0012-821X(01)00232-1 Lo, C. H., Chang, S. C., Chen, W. S., & Song, S. R. (2002) Cold basin in Coastal Range, Eastern Taiwan: inferred from argon retention in zeolite and altered glass during burial heating. Western Pacific Earth Sciences, 2(2), 223-238. Malusà, M. G., Carter, A., Limoncelli, M., Villa, I. M., & Garzanti, E. (2013) Bias in detrital zircon geochronology and thermochronometry. Chemical Geology, 359, 90-107. doi: https://doi.org/10.1016/j.chemgeo.2013.09.016 Malusà, M. G., & Fitzgerald, P. G. (2019) From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. Fission-track thermochronology and its application to geology, 147-164. doi: https://doi.org/10.1007/978-3-319-89421-8_8 Malusà, M. G., Wang, J., Garzanti, E., Liu, Z. C., Villa, I. M., & Wittmann, H. (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos, 290, 48-59. doi: https://doi.org/10.1016/j.lithos.2017.08.006 McDOWELL, F. W., & Keizer, R. P. (1977) Timing of mid-Tertiary volcanism in the Sierra Madre Occidental between Durango city and Mazatlán, Mexico. Geological Society of America Bulletin, 88(10), 1479-1487. doi: https://doi.org/10.1130/0016-7606(1977)88%3C1479:TOMVIT%3E2.0.CO;2 Naeser, N. D., Zeitler, P. K., Naeser, C. W., & Cerveny, P. F. (1987) Provenance studies by fission-track dating of zircon-etching and counting procedures. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 13(2), 121-126. doi: https://doi.org/10.1016/1359- 0189(87)90022-7 Reiners, P. W., & Brandon, M. T. (2006) Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci., 34, 419-466. doi: https://doi.org/10.1146/annurev.earth.34.031405.125202 Resentini, A., Malusa, M. G., & Garzanti, E. (2020) Ongoing exhumation of the Taiwan orogenic wedge revealed by detrital apatite thermochronology: The impact of effective mineral fertility and zero-track grains. Earth and Planetary Science Letters, 544, 13. doi: https://doi.org/10.1016/j.epsl.2020.116374 Richard, M., Bellon, H., Maury, R. C., Barrier, E., Juang, W. S. (1986) Miocene to recent calc-alkaline volcanism in eastern Taiwan: K-Ar ages and petrography. Tectonophysics, 125, 87-102 Richter, S., Alonso, A., De Bolle, W., Wellum, R., & Taylor, P. D. P. (1999). Isotopic “fingerprints” for natural uranium ore samples. International Journal of Mass Spectrometry, 193(1), 9-14. doi: https://doi.org/10.1016/S1387-3806(99)00102-5 Richter, S., Alonso, A., Truyens, J., Kühn, H., Verbruggen, A., & Wellum, R. (2007). Evaluating the status of uranium isotope ratio measurements using an inter-laboratory comparison campaign. International Journal of Mass Spectrometry, 264(2-3), 184-190. doi: https://doi.org/10.1016/j.ijms.2007.04.013 Shao, W. Y., Chung, S. L., Chen W. S. (2012) Old continental crust beneath young oceanic arc, eastern Taiwan: New Data and Interpretation Related to Taiwan Orogeny. Abstract to Geol. Soc. China Annual Meeting, Chung-Li, p. 234. Shao, W. Y., Chung, S. L., Chen, W. S., Lee, H. Y., & Xie, L. W. (2015) Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny. Geology, 43(6), 479-482. doi: https://doi.org/10.1130/g36499.1 Shen, T. T., Liu, T. K., Huang, S. Y., Hsieh, P. S., & Wu, C. Y. (2019) Post-collisional exhumation and geotherm pattern in northern Tananao Complex, northeastern Taiwan. Terrestrial Atmospheric and Oceanic Sciences. doi: https://doi.org/10.3319/TAO.2019.04.06.01 Simoes, M., Avouac, J. P., Beyssac, O., Goffé, B., Farley, K. A., & Chen, Y. G. (2007) Mountain building in Taiwan: A thermokinematic model. Journal of Geophysical Research: Solid Earth, 112(B11). doi: https://doi.org/10.1029/2006JB004824 Song, S. R., & Lo, H. J. (1988) Volcanic Geology Of Fongpin-Takangkou Area, Coastal Range Of Taiwan. Symposium on the Arc-Continent Collision and Orogenic Sedimentation in Eastern Taiwan and Ancient Analogs, Handbook, Taiwan, ROC. Song, T. R. A., Ma, K. F., Byrne, T. B., & Liu, C. S. (2002) Estimation of the thermal structure of a young orogenic belt according to a model of whole-crust thickening. Geology and geophysics of an arc-continent collision, Taiwan, 358, 121-136. doi: https://doi.org/10.1130/0-8137-2358-2.121 Steven, T., Mehnert, H., & Obradovich, J. (1967) Age of Volcanic activity in the San Juan Mountains, Colorado, USGS Prof. Paper, 575-D. D47–D55. Suppe, J. (1981) Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China (Taiwan), 4, 67-89. Tagami, T. (2005) Zircon fission-track thermochronology and applications to fault studies. Reviews in Mineralogy and Geochemistry, 58(1), 95-122. doi: https://doi.org/10.2138/rmg.2005.58.4 Tagami, T., Lal, N., Sorkhabi, R. B., Ito, H., & Nishimura, S. (1988) Fission track dating using external detector method. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 53(1-2), 1-30. Tagami, T., & O’Sullivan, P. B. (2005) Fundamentals of fission-track thermochr-onology. Reviews in mineralogy and geochemistry, 58(1), 19-47. doi: https://doi.org/10.2138/rmg.2005.58.2 Teng, L. S. (1979) Petrographical study of Neogene sandstones of the Coastal Range, eastern Taiwan(1. Northern Part) Science Reports of the National Taiwan University ACTA Geologica Taiwanica, 20, 129-156. Tsai, C. H., Iizuka, Y., & Ernst, W. G. (2013) Diverse mineral compositions, textures, and metamorphic P–T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan. Journal of Asian Earth Sciences, 63, 218-233. doi: https://doi.org/10.1016/j.jseaes.2012.09.019 Wagner, G. A., Miller, D. S., & Jäger, E. (1979) Fission track ages on apatite of Bergell rocks from Central Alps and Bergell boulders in Oligocene sediments. Earth and Planetary Science Letters, 45, 355. doi: https://doi.org/10.1016/0012-821x(79)90136-5 Wagner, G. A., & Reimer, G. M. (1972) Fission track tectonics: The tectonic interpretation of fission track apatite ages. Earth and Planetary Science Letters, 14, 263-268. Wagner, G. A., van den Haute, P. (1992) Fission-Track Dating. Solid earth sciences library, vo;. 6. In: Kluwer Academic Publishers, Dordrecht, 285p. Walter, R. C. (1989) Application and limitation of fission-track geochronology to Quarternary tephras. Quaternary International, 1, 35-46. Wang, H. L., Zhu, L., & Chen, H. W. (2010) Moho depth variation in Taiwan from teleseismic receiver functions. Journal of Asian Earth Sciences, 37(3), 286-291. doi: https://doi.org/10.1016/j.jseaes.2009.08.015 Wang, Y., Wang, Y., Li, S., Seagren, E., Zhang, Y., Zhang, P., & Qian, X. (2020) Exhumation and landscape evolution in eastern South China since the Cretaceous: New insights from fission-track thermochronology. Journal of Asian Earth Sciences, 191, 104239. doi: https://doi.org/10.1016/j.jseaes.2020.104239 Wang, Y., & Yang, C. N. (1974) Geology and copper deposits of Chimei area, Coastal Range, Taiwan. Proceedings of the National Science Council, Republic of China, 7(1), 1-23. Wang, Y., Zuo, R., Cao, K., Xu, X., & Zattin, M. (2022) Late Mesozoic to Cenozoic exhumation of the SE South China Block: Constraints from zircon and apatite fission-track thermochronology. Tectonophysics, 838, 229518. doi: https://doi.org/10.1016/j.tecto.2022.229518 Warneke, L. A., & Ernst, W. G. (1984) Progressive Cenozoic Metamorphism Of Rocks Cropping Out Along The Southern East-West Cross-Island Highway, Taiwan. Memoir of the Geological Society of China (Taiwan), 6, 105-132. Willett, S. D., & Brandon, M. T. (2002) On steady states in mountain belts. Geology, 30(2), 175-178. doi: https://doi.org/10.1130/0091-7613(2002)030<0175:Ossimb>2.0.Co;2 Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C., & Lu, C. Y. (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948. doi: https://doi.org/10.1130/g19702.1 Yang, T. F., Chen, C. H., Tien, R. L., Song, S. R., & Liu, T. K. (2003) Remnant magmatic activity in the Coastal Range of East Taiwan after arc–continent collision: fission-track data and 3He/4He ratio evidence. Radiation Measurements, 36(1-6), 343-349. doi: https://doi.org/10.1016/S1350-4487(03)00149-5 Yang, T. F., Tien, J. L., Chen, C. H., Lee, T., & Punongbayan, R. S. (1995) Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination. Journal of Southeast Asian Earth Sciences, 11(2), 81-93. doi: https://doi.org/10.1016/0743-9547(94)00041-C Yang, T. Y., Liu, T. K., Chen, C. H. (1988) Thermal event records of the Chi-mei Igneous Complex: constraint on the ages of magma activities and the structural implication based on fission track dating. Acta Geol. Taiwan. 26, 237-246. Yao, T. M., Tien, P. L., Wang-Lee, C. (1988) Clay mineralogical studies on the Neogene formations, Taiyuan basin, southern Coastal Range of Taiwan. Acta Geologica Taiwanica, 26, 263-277. Yen, T. P. (1963) The metamorphic belts within the Tananao schist. Bulletin of Geological Survey, Taiwan, 7, 47-50. Yen T. P. (1967) Volcanic geology of the Coastal Range, eastern Taiwan. Proceedings of the Geological Society of China, 6, 72-74 Zhang, Y., Tsai, C. H., Froitzheim, N., & Ustaszewski, K. (2020) The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates. Terrestrial, Atmospheric & Oceanic Sciences, 31(4). doi: https://doi.org/10.3319/TAO.2020.06.28.01 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90030 | - |
dc.description.abstract | 中期中新世以來,歐亞大陸隱沒至菲律賓海板塊之下形成一系列火山島弧,隨著大陸與島弧碰撞,山脈也逐漸抬升剝蝕,大量沉積物堆積於造山帶周邊的盆地中。從現今山脈岩層的熱定年結果可以推估近期山脈的剝蝕歷史,但是欲了解早期造山山脈早期的剝蝕歷史,則必須從盆地中的碎屑沉積物的定年資料,才可以探究此結果。本研究於南段海岸山脈泰源盆地中的馬達吉達溪剖面採集12個砂岩與1個礫石樣本,利用磷灰石(AFT)、鋯石核飛跡定年(ZFT)和砂岩岩象分析探討源區山脈與盆地間的源-匯關係,以及脊樑山脈早期的造山演化史。
砂岩的AFT與ZFT定年結果顯示,源區山脈出露岩層的最高變質溫度大多介於200~260℃之間,而分別在蕃薯寮層與八里灣層頂部出現變質溫度高於260℃的變質岩岩屑,則指示山脈逐漸出露埋藏較深的岩層。其中,最底部的砂岩樣本含大量火成岩岩屑,因此本研究將磷灰石細分為島弧及造山帶來源,並分別計算AFT年代,結果指出火山碎屑可能來自成廣澳火山,而變質岩屑可能來自玉里帶上覆硬頁岩層。唯一的礫石樣本採集自崩積礫岩層,在沉積於泰源盆地前曾短暫堆積於北段海岸山脈的水璉礫岩層,因此本研究比對此礫石與鹽寮坑溪礫石的AFT與ZFT年代,發現兩者定年結果相近,均來自變質溫度200~260℃的岩層。 根據砂岩的AFT遲滯時間變化可知,2 Ma時遲滯時間突然由0~1 m.y.增加至2~4 m.y.,指示源區可能有新的來源開始剝蝕,且該岩層的冷卻速率較慢。本研究提出三種可能的新來源岩層,分別是複背斜翼部的板岩層、中段脊樑山脈玉里帶西側的太魯閣帶,以及山脈較南側的岩體。綜合前人及本研究結果推測後前淵盆地的碎屑物主要來自玉里帶上覆岩層,且AFT遲滯時間顯示玉里帶剝蝕歷史從初始抬升(~12 Ma)、加速剝蝕階段,到~3 Ma達到與現今相同的冷卻速率,並於2~1.2 Ma之後趨於穩定剝蝕,冷卻速率自15 ℃/m.y.增加至200~400 ℃/m.y.並持續至今。 | zh_TW |
dc.description.abstract | Taiwan orogen has been developing since middle Miocene due to the subduction of South China Sea Plate and the arc-continent collision of the Eurasian Plate and the Philippine Sea Plate, which is called the Penglai Orogeny. As the orogen exhumed, those detritus filled into the basins around the orogenic belt. In order to reconstruct the early stage of the orogeny and the source-to-sink relationship of the orogenic belt and basins, we collected 12 sandstones and 1 boulder from Madajidachi-section in retro-foredeep basin, then analyzed with Apatite (AFT), Zircon Fission Track (ZFT) Dating, and also the petrography of sandstones.
The dating results of AFT and ZFT show that most of the source rocks experienced the highest metamorphic temperature between 200~260℃, while part of them experienced even higher than 260℃, which indicates the deeper formation has been gradually exhumed. The petrography analysis reveals a source change from arc to orogen between 3.5~4 Ma. Compiling the AFT and ZFT ages of the sandstone samples at the base of the profile, our results suggest that the arc-derived detritus may be derived from the Chengkuang’ao volcano, while the orogen-derived detritus may come from the argillite formation on the Yuli Belt. The only boulder sample between Fanshuliao and Paliwan Formation is recognized as the colluvium from the Shuelien Conglomerate Formation in the northern Coastal Range, and the AFT and ZFT dating results indicate that the protolith experienced the highest metamorphic temperature between 200~260℃. Based on the trend of AFT lag time, there exists an increase from 0~1 m.y. to 2~4 m.y. around 2 Ma, indicating a new source in the provenance which presented lower cooling rate. We suggest that the new source might be the slate formation on the limb of the multi-anticline, the Tailuko Belt on the west side of Yuli Belt, or the southern terrain on the orogenic belt. In conjunction with previous studies, we argue that the detritus in retro-foredeep basin are mainly derived from the cover of the Yuli Belt on the middle Backbone Range, and the change of AFT lag time suggests that Yuli Belt has experienced acceleration stages since the initial uplift ~12 Ma, and gradually approached the highest cooling rate at ~3 Ma, then finally reached the steady state between 2~1.2 Ma. The cooling rate of the Yuli Belt increased from 15 ℃/m.y. to 200~400 ℃/m.y., and remained as the highest cooling rate until now. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:07:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:07:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 式目錄 xvi 第一章 緒論 1 1-1 前言 1 1-2前人研究 6 1-3 研究動機與目的 12 第二章 區域地質背景 13 2-1 海岸山脈地質概述 13 2-2 地層概述 15 2-2-1奇美火成雜岩 15 2-2-2都鑾山層 15 2-2-3 港口石灰岩 16 2-2-4 蕃薯寮層 17 2-2-5 八里灣層 19 2-2-6 卑南山礫岩等晚更新世礫岩層 19 2-3研究區域 20 第三章 研究方法 26 3-1 核飛跡定年法 26 3-1-1核飛跡的形成 26 3-1-2 核飛跡的癒合 27 3-1-3 核飛跡年代所代表的地質意義 31 3-1-4 核飛跡年代的計算 33 3-1-5 中子通量計算 36 3-1-6 Zeta校正法(Zeta-calibration method) 37 3-1-7 核飛跡年代誤差與卡方檢定 38 3-1-8 核飛跡年代統計 40 3-1-9 核飛跡年代測定法 42 3-1-10 實驗流程 44 3-2 砂岩岩象分析 51 3-2-1臺灣造山帶各岩性之岩象特徵 51 3-2-2岩象分析 57 3-2-3岩象特徵組合 63 3-3 樣本採集 64 第四章 研究結果 66 4-1 核飛跡定年結果 68 4-1-1 砂岩 68 4-1-2 礫石 71 4-2 砂岩岩象分析結果 76 第五章 討論 83 5-1 沉積物來源及源區核飛跡年代判別標準 83 5-1-1 馬達吉達溪剖面沉積物來源 84 5-1-2 源區熱定年年代 85 5-1-2-1 華南古陸熱定年研究結果 86 5-1-2-2 火山島弧熱定年研究結果 87 5-1-3 樣本核飛跡年代的意義 89 5-1-3-1 未癒合年代 89 5-1-3-2 完全癒合年代 90 5-1-3-3 部分癒合年代 91 5-1-4 源區出露岩性判別依據 93 5-2 砂岩核飛跡年代意義 97 5-2-1 砂岩源區分析 97 5-2-2 樣本MDJ-01源區分析 106 5-3 礫石核飛跡年代意義 115 5-4 遲滯時間 120 5-4-1 遲滯時間的定義與應用 120 5-4-1-1 遲滯時間的分布與隱示 120 5-4-1-2 冷卻速率與剝蝕速率 125 5-4-1-3 遲滯時間等時線 127 5-4-2 後前淵盆地碎屑沉積物的遲滯時間變化 128 5-5 源區山脈剝蝕冷卻歷史 137 5-5-1 沉積年代2 Ma之前的源區分析 137 5-5-2 沉積年代2 Ma之後的樣本源區分析 145 5-5-3 玉里帶的剝蝕冷卻歷史 154 5-6 綜合討論 162 5-6-1 源區山脈與後前淵盆地的源-匯關係 162 5-6-2 中段脊樑山脈剝蝕歷史 166 5-6-3 利用沉積盆地碎屑物探討臺灣造山演化的限制 168 第六章 結論 169 參考文獻 171 附錄 187 附錄一 磷灰石核飛跡BINOMFIT參數 187 附錄二 鋯石核飛跡BINOMFIT參數 233 附錄三 岩象分析數據 270 附錄四 Age2Edot參數設定 271 | - |
dc.language.iso | zh_TW | - |
dc.title | 海岸山脈馬達吉達溪剖面之碎屑鋯石及磷灰石核飛跡定年研究─探討源區山脈之剝蝕歷史 | zh_TW |
dc.title | Detrital zircon and apatite fission-track dating of Madajidachi section in the Coastal Range, Taiwan - Implications for the exhumation history of source area | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 陳文山 | zh_TW |
dc.contributor.coadvisor | Wen-Shan Chen | en |
dc.contributor.oralexamcommittee | 顏君毅;黃韶怡 | zh_TW |
dc.contributor.oralexamcommittee | Jiun-Yee Yen;Shao-Yi Huang | en |
dc.subject.keyword | 核飛跡定年,蕃薯寮層,八里灣層,脊樑山脈,剝蝕歷史, | zh_TW |
dc.subject.keyword | Fission Track Dating,orogenic belt,retro-foredeep basin,exhumation history,Yuli Belt, | en |
dc.relation.page | 271 | - |
dc.identifier.doi | 10.6342/NTU202303814 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 16.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。