Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90019
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州zh_TW
dc.contributor.advisorYao-Joe Yangen
dc.contributor.author洪笙峰zh_TW
dc.contributor.authorSheng-Feng Hungen
dc.date.accessioned2023-09-22T17:04:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationT. M. Keenan and A. Folch, “Biomolecular gradients in cell culture systems,” Lab on a Chip, vol. 8, no. 1, pp. 34-57, 2008.
L. Jiang, Q. Ouyang, and Y. Tu, “Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time,” PLOS Computational Biology, vol. 6, no. 4, p. e1000735, 2010.
E. M. Miller and A. R. Wheeler, “A digital microfluidic approach to homogeneous enzyme assays,” Analytical Chemistry, vol. 80, no. 5, pp. 1614-1619, 2008.
G. Zheng, Y. Wang, and J. Qin, “Microalgal motility measurement microfluidic chip for toxicity assessment of heavy metals,” Analytical and Bioanalytical Chemistry, vol. 404, no. 10, pp. 3061-3069, 2012.
C.-G. Yang, Z.-R. Xu, A. P. Lee, and J.-H. Wang, “A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles,” Lab on a Chip, vol. 13, no. 14, pp. 2815-2820, 2013.
J. Dai, X. Yang, M. Hamon, and L. Kong, “Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip,” Chemical Engineering Journal, vol. 280, pp. 385-390, 2015.
T. M. Keenan and A. Folch, “Biomolecular gradients in cell culture systems,” Lab on a Chip, vol. 8, no. 1, pp. 34-57, 2008.
C.-Y. Lee and L.-M. Fu, “Recent advances and applications of micromixers,” Sensors and Actuators B: Chemical, vol. 259, pp. 677-702, 2018.
R. Gundersen and J. Barrett, “Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor,” Science, vol. 206, no. 4422, pp. 1079-1080, 1979.
A. M. Lohof, M. Quillan, Y. Dan, and M. Poo, “Asymmetric modulation of cytosolic cAMP activity induces growth cone turning,” Journal of Neuroscience, vol. 12, no. 4, pp. 1253-1261, 1992.
Z. Pujic, C. E. Giacomantonio, D. Unni, W. J. Rosoff, and G. J. Goodhill, “Analysis of the growth cone turning assay for studying axon guidance,” Journal of Neuroscience Methods, vol. 170, no. 2, pp. 220-228, 2008.
T. Lühmann and H. Hall, “Cell guidance by 3D-gradients in hydrogel matrices: importance for biomedical applications,” Materials, vol. 2, no. 3, pp. 1058-1083, 2009.
Y. Shin, S. Han, J. S. Jeon, K. Yamamoto, I. K. Zervantonakis, R. Sudo, R. D. Kamm, and S. Chung, “Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels,” Nature Protocols, vol. 7, no. 7, pp. 1247-1259, 2012.
S. H. Zigmond, “Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors,” Journal of Cell Biology, vol. 75, no. 2, pp. 606-616, 1977.
D. Zicha, G. A. Dunn, and A. F. Brown, “A new direct-viewing chemotaxis chamber,” Journal of Cell Science, vol. 99, no. 4, pp. 769-775, 1991.
E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, no. 7491, pp. 181-189, 2014.
B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, vol. 5, no. 4, pp. 401-406, 2005.
L.-F. Cai, Y. Zhu, G.-S. Du, and Q. Fang, “Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay,” Analytical Chemistry, vol. 84, no. 1, pp. 446-452, 2012.
J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, and O. Orwar, “Microfluidic gradient-generating device for pharmacological profiling,” Analytical Chemistry, vol. 77, no. 13, pp. 3897-3903, 2005.
X. Gao, “The rules have changed: A case study of Chinese government support of local technologies,” Research Technology Management, vol. 57, no. 1, pp. 11-14, 2014.
C.-W. Tsao, Y.-C. Cheng, and J.-H. Cheng, “Fluid flow shear stress stimulation on a multiplex microfluidic device for rat bone marrow stromal cell differentiation enhancement,” Micromachines (Basel), vol. 6, no. 12, pp. 1996-2009, 2015.
W. Zhong, H. Ma, S. Wang, X. Gao, W. Zhang, and J. Qin, “An integrated microfluidic device for characterizing chondrocyte metabolism in response to distinct levels of fluid flow stimulus,” Microfluidics and Nanofluidics, vol. 15, no. 6, pp. 763-773, 2013.
C. Zheng, X. Zhang, C. Li, Y. Pang, and Y. Huang, “Microfluidic device for studying controllable hydrodynamic flow induced cellular responses,” Analytical Chemistry, vol. 89, no. 6, pp. 3710-3715, 2017.
J. Lee, Z. Estlack, H. Somaweera, X. Wang, C. M. R. Lacerda, and J. Kim, “A microfluidic cardiac flow profile generator for studying the effect of shear stress on valvular endothelial cells,” Lab on a Chip, vol. 18, no. 19, pp. 2946-2954, 2018.
G. Castellanos, S. Nasim, D. M. Almora, S. Rath, and S. Ramaswamy, “Stem cell cytoskeletal responses to pulsatile flow in heart valve tissue engineering studies,” Frontiers in Cardiovascular Medicine, vol. 5, 2018.
H. Xu, J. Duan, L. Ren, P. Yang, R. Yang, W. Li, D. Zhao, P. Shang, and J. X. Jiang, “Impact of flow shear stress on morphology of osteoblast-like IDG-SW3 cells,” Journal of Bone and Mineral Metabolism, vol. 36, no. 5, pp. 529-536, 2018.
K.-J. Jang, H. S. Cho, D. H. Kang, W. G. Bae, T.-H. Kwon, and K.-Y. Suh, “Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells,” Integrative Biology, vol. 3, no. 2, pp. 134-141, 2011.
H. Mao, P. S. Cremer, and M. D. Manson, “A sensitive, versatile microfluidic assay for bacterial chemotaxis,” Proceedings of the National Academy of Sciences, vol. 100, no. 9, pp. 5449-5454, 2003.
J. Wyckoff, W. Wang, E. Y. Lin, Y. Wang, F. Pixley, E. R. Stanley, T. Graf, J. W. Pollard, J. Segall, and J. Condeelis, “A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors,” Cancer research, vol. 64, no. 19, pp. 7022-7029, 2004.
F. Balkwill, “Cancer and the chemokine network,” Nature Reviews Cancer, vol. 4, no. 7, pp. 540-550, 2004.
X. Wang, Z. Liu, and Y. Pang, “Concentration gradient generation methods based on microfluidic systems,” Royal Society of Chemistry Advances, vol. 7, no. 48, pp. 29966-29984, 2017.
S. K. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, “Gradients of substrate-bound laminin orient axonal specification of neurons,” Proceedings of the National Academy of Sciences, vol. 99, no. 20, pp. 12542-12547, 2002.
N. L. Jeon, S. K. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, “Generation of solution and surface gradients using microfluidic systems,” Langmuir, vol. 16, no. 22, pp. 8311-8316, 2000.
K. Campbell and A. Groisman, “Generation of complex concentration profiles in microchannels in a logarithmically small number of steps,” Lab on a Chip, vol. 7, no. 2, pp. 264-272, 2007.
H. A. Yusuf, S. J. Baldock, R. W. Barber, P. R. Fielden, N. J. Goddard, S. Mohr, and B. J. T. Brown, “Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging,” Lab on a Chip, vol. 9, no. 13, pp. 1882-1889, 2009.
B. Zhou, W. Xu, C. Wang, Y. Chau, X. Zeng, X.-X. Zhang, R. Shen, and W. Wen, “Generation of tunable and pulsatile concentration gradients via microfluidic network,” Microfluid. Nanofluidics, vol. 18, no. 2, pp. 175-184, 2015.
S. Höving, D. Janasek, and P. Novo, “Flow rate independent gradient generator and application in microfluidic free-flow electrophoresis,” Analytica Chimica Acta, vol. 1044, pp. 77-85, 2018.
K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, “Design of pressure-driven microfluidic networks using electric circuit analogy,” Lab on a Chip, vol. 12, no. 3, pp. 515-545, 2012.
K. Hattori, S. Sugiura, and T. Kanamori, “Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio,” Lab on a Chip, vol. 9, no. 12, pp. 1763-1772, 2009.
K. Lee, C. Kim, B. Ahn, R. Panchapakesan, A. R. Full, L. Nordee, J. Y. Kang, and K. W. Oh, “Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators,” Lab on a Chip, vol. 9, no. 5, pp. 709-717, 2009.
Y. Li, D. Chen, Y. Zhang, C. Liu, P. Chen, Y. Wang, X. Feng, W. Du, and B.-F. Liu, “High-throughput single cell multidrug resistance analysis with multifunctional gradients-customizing microfluidic device,” Sensors and Actuators B: Chemical, vol. 225, pp. 563-571, 2016.
H. Shi, Z. Hou, Y. Zhao, K. Nie, B. Dong, L. Chao, S. Shang, M. Long, and Z. Liu, “Rapid and steady concentration gradient generation platform for an antimicrobial susceptibility test,” Chemical Engineering Journal, vol. 359, pp. 1327-1338, 2019.
M. Rossi, R. Lindken, B. P. Hierck, and J. Westerweel, “Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow,” Lab on a Chip, vol. 9, no. 10, pp. 1403-1411, 2009.
L. Wang, Z.-L. Zhang, J. Wdzieczak-Bakala, D.-W. Pang, J. Liu, and Y. Chen, “Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response,” Lab on a Chip, vol. 11, no. 24, pp. 4235-4240, 2011.
R. Booth, S. Noh, and H. Kim, “A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells,” Lab on a Chip, vol. 14, no. 11, pp. 1880-1890, 2014.
R. Sinha, S. Le Gac, N. Verdonschot, A. van den Berg, B. Koopman, and J. Rouwkema, “A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells,” Lab on a Chip, vol. 15, no. 2, pp. 429-439, 2015.
E. Gutierrez, B. G. Petrich, S. J. Shattil, M. H. Ginsberg, A. Groisman, and A. Kasirer-Friede, “Microfluidic devices for studies of shear-dependent platelet adhesion,” Lab on a Chip, vol. 8, no. 9, pp. 1486-1495, 2008.
L. Chau, M. Doran, and J. Cooper-White, “A novel multishear microdevice for studying cell mechanics,” Lab on a Chip, vol. 9, no. 13, pp. 1897-1902, 2009.
S. Kou, L. Pan, D. v. Noort, G. Meng, X. Wu, H. Sun, J. Xu, and I. Lee, “A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 350-355, 2011.
M. Y. Rotenberg, E. Ruvinov, A. Armoza, and S. Cohen, “A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs,” Lab on a Chip, vol. 12, no. 15, pp. 2696-2703, 2012.
K.-Y. Lo, Y. Zhu, H.-F. Tsai, and Y.-S. Sun, “Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells,” Biomicrofluidics, vol. 7, no. 6, p. 064108, 2013.
H. W. Kim, J. Lim, J. W. Rhie, and D. S. Kim, “Investigation of effective shear stress on endothelial differentiation of human adipose-derived stem cells with microfluidic screening device,” Microelectronic Engineering, vol. 174, pp. 24-27, 2017.
S. Feng, S. Mao, Q. Zhang, W. Li, and J.-M. Lin, “Online analysis of drug toxicity to cells with shear stress on an integrated microfluidic chip,” American Chemical Society Sensors., vol. 4, no. 2, pp. 521-527, 2019.
U. M. Sonmez, Y.-W. Cheng, S. C. Watkins, B. L. Roman, and L. A. Davidson, “Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator,” Lab on a Chip, vol. 20, no. 23, pp. 4373-4390, 2020.
A. Marrella, A. Fedi, G. Varani, I. Vaccari, M. Fato, G. Firpo, P. Guida, N. Aceto, and S. Scaglione, “High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device,” PLOS One, vol. 16, no. 1, p. e0245536, 2021.
Y. H. Chiu, “Synthesizing Microfluidic Networks of One-Step-Dilution Gradient Generators with Arbitrary Concentration Profiles,” M.E. thesis, National Taiwan University, Taiwan, 2022.
G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual Review of Biomedical Engineering, vol. 3, no. 1, pp. 335-373, 2001.
P. Rai-Choudhury, Handbook of microlithography, micromachining, and microfabrication: microlithography. London: SPIE Optical Engineering Press, 1997.
X. Jiang, Q. Xu, S. K. Dertinger, A. D. Stroock, T.-m. Fu, and G. M. Whitesides, “A general method for patterning gradients of biomolecules on surfaces using microfluidic networks,” Analytical Chemistry, vol. 77, no. 8, pp. 2338-2347, 2005.
M. W. Toepke and D. J. Beebe, “PDMS absorption of small molecules and consequences in microfluidic applications,” Lab on a Chip, vol. 6, no. 12, pp. 1484-1486, 2006.
T. Fujii, “PDMS-based microfluidic devices for biomedical applications,” Microelectronic Engineering, vol. 61, pp. 907-914, 2002.
T. G. Henares, F. Mizutani, and H. Hisamoto, “Current development in microfluidic immunosensing chip,” Analytica Chimica Acta, vol. 611, no. 1, pp. 17-30, 2008.
E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T. A. Kovacs, “Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures,” Sensors and Actuators A: Physical, vol. 52, no. 1, pp. 132-139, 1996/03/01/ 1996.
B.-H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectromechanical Systems, vol. 9, no. 1, pp. 76-81, 2000.
M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” Journal of Micromechanics and Microengineering, vol. 18, no. 6, p. 067001, 2008.
M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, vol. 8, no. 10, pp. 1063-1075, 1994.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90019-
dc.description.abstract本研究開發剪應力梯度產生器(shear stress gradient generators, SSGG),與提出SSGG與濃度梯度產生器(Concentration gradient generator, CGG)及軟性感測晶片之整合技術。CGG是使用單步稀釋的微流道網路設計,並能夠在寬廣的輸入流量範圍內表現出高通量之特性。合成CGG的方法是利用電路與微流道網路之間的類比計算出混合流道的等效流阻,透過每個混合流道之間的流阻差異,能夠控制樣本液與緩衝液流入各個混合流道的體積混和比,並進一步在微流道出口產生預定義之濃度分布,透過此方法成功生成了線性(Linear)之濃度梯度。設計的SSGG原理是根據使用者定義之剪應力比例而計算出相對應的流道長度。濃度梯度產生器整合元件和剪應力梯度產生器整合元件皆透過微影製程(Photolithography)技術將其製成三層的微流道結構,並將三層PDMS層與軟性感測器整合。CGGs是透過將樣本液與緩衝液通入元件中進行量測,量測結果與理論值的誤差在5%之內,且在1.8至18 µL/min的流量範圍內能夠維持穩定的濃度梯度分布。SSGGs是透過量測液體在出口毛細管中的流速以計算出剪應力,線性和二次對數(2-fold logarithmic)之SSGGs的量測結果與理論值的誤差皆在5%之內,且在13 µL/min的流量範圍內能夠維持穩定。zh_TW
dc.description.abstractThis work presents the integration of gradient concentration generators (CGGs), shear stress gradient generators (SSGGs), and fluidic sensing devices. The CGGs, which can be synthesized by using a proposed algorithm, exhibits high throughput with a wide range of input flowrates. The proposed CGG-synthesizing algorithm calculates the equivalent channel flow resistances, which control the volumetric mixing ratios of the CGG mixing channels to generate predefined concentration gradient profiles. The optimization of the flow resistance ratios for realizing smallest footprint of microfluidic chips was performed in this work. In addition, microfluidic networks for generating various shear stress gradients were also designed and implemented. The SSGGs regulate fluid shear stress by varying the channel lengths to obtain appropriate flow velocity of each channel. The CGGs and the SSGGs are fabricated and implemented using the standard soft lithography technique. The microfluidic chip consists of three layers made from PDMS. A polymer-based glucose sensor is also integrated with each chip during the PDMS bonding process. The concentration gradient profiles of CGGs were measured by dye visualization. The error between the analytical profile and measured concentration profile is less than 5%. The generated concentration profiles were independent of the flow rate within the range of 1.8 to 18 µL/min. The performance of SSGGs is determined by measuring the marching velocity of a capillary meniscus for each microchannel. The shear stress on the sidewall of a channel can be evaluated by the associated velocity. The measured results show that the proposed SSGGs produce precise shear stress gradients for the designs of the linear and logarithmic profile (R2 is higher than 0.997 for both cases). In addition, the discrepancy between the measurement results and analytical profiles is approximately 1%–5%.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:04:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:04:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xvii
符號說明 xix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 濃度梯度產生器 2
1.2.2 剪應力梯度產生器 12
1.3 研究動機與目的 19
1.4 論文架構 20
第二章 研究理論基礎與元件設計 23
2.1 微流道設計流程與數學模型推導 23
2.2 演算法之最佳化與運算結果 27
2.2.1 入口流量比之最佳化 28
2.2.2 混合流道長度之最佳化 28
2.2.3 演算法運算結果 29
2.3 濃度梯度產生器之設計參數 31
2.4 濃度梯度產生器整合元件之設計參數 34
2.5 剪應力梯度產生器之理論 37
2.6 剪應力梯度產生器之設計參數 39
第三章 計算流體力學之模擬結果與討論 45
3.1 模擬軟體環境架設 45
3.2 不同流量下之濃度分布 46
3.2.1 五個出口高斯濃度梯度產生器模擬結果 46
3.2.2 七個出口高斯濃度梯度產生器量測結果 48
3.2.3 五個出口二次對數濃度梯度產生器模擬結果 49
第四章 製造方法與步驟 51
4.1 元件製作流程 51
4.1.1 光罩設計 53
4.1.2 微影製程 56
4.1.3 翻模轉印 63
4.2 元件組裝與製程結果 65
4.2.1 剪應力梯度產生器元件組裝 65
4.2.2 與軟性感測器整合元件之組裝 67
4.2.3 製程結果 69
第五章 量測結果與討論 73
5.1 量測架設 73
5.1.1 濃度梯度產生器整合元件之量測架設 73
5.1.2 剪應力梯度產生器之量測架設 74
5.2 濃度梯度產生器整合元件之量測結果與討論 74
5.3 剪應力梯度產生器之量測結果與討論 75
5.3.1 線性剪應力梯度產生器(四個出口)整合元件之量測結果 76
5.3.2 線性剪應力梯度產生器(五個出口)之量測結果 76
5.3.3 線性剪應力梯度產生器(六個出口)之量測結果 77
5.3.4 二次對數剪應力梯度產生器(四個出口)之量測結果 78
第六章 結論與未來展望 79
6.1 結論 79
6.2 未來展望 80
參考文獻 81
附錄A 91
-
dc.language.isozh_TW-
dc.subject微流體zh_TW
dc.subject單步稀釋zh_TW
dc.subject濃度梯度產生器整合zh_TW
dc.subject剪應力梯度產生器整合zh_TW
dc.subjectShear stress gradient generatoren
dc.subjectConcentration gradient generatoren
dc.subjectOne-step dilutionen
dc.subjectMicrofluidicsen
dc.title微流體晶片與軟性感測晶片之整合製程及剪應力梯度晶片的開發zh_TW
dc.titleIntegration of Microfluidic Chips with Polymer-Based Sensing Devices and Development of Shear Stress Gradient Generatorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳國聲;蘇裕軒zh_TW
dc.contributor.oralexamcommitteeKuo-Shen Chen;Yu-Hsuan Suen
dc.subject.keyword濃度梯度產生器整合,剪應力梯度產生器整合,單步稀釋,微流體,zh_TW
dc.subject.keywordConcentration gradient generator,Shear stress gradient generator,One-step dilution,Microfluidics,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202303732-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved