Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90012
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖zh_TW
dc.contributor.advisorNien-Tsu Huangen
dc.contributor.author李王鈞zh_TW
dc.contributor.authorWang-Jiun Leeen
dc.date.accessioned2023-09-22T17:03:07Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation1. M. Dowling, N. Peres, S. Villani and G. Schnabel, Plant Disease, 2020, 104, 2301-2316.
2. C. Aaij and P. Borst, Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 1972, 269, 192-200.
3. G. M. Wahl, J. L. Meinkoth and A. R. Kimmel, Methods Enzymol.;(United States), 1987, 152.
4. D. Stott, Journal of immunological methods, 1989, 119, 153-187.
5. M. Grunstein and D. S. Hogness, Proceedings of the National Academy of Sciences, 1975, 72, 3961-3965.
6. W. M. Freeman, S. J. Walker and K. E. Vrana, Biotechniques, 1999, 26, 112-125.
7. A. Ehrenreich, Applied microbiology and biotechnology, 2006, 73, 255-273.
8. M. J. Heller, Annual review of biomedical engineering, 2002, 4, 129-153.
9. N. Shao, J. Chen, J. Hu, R. Li, D. Zhang, S. Guo, J. Hui, P. Liu, L. Yang and S.-c. Tao, Lab on a Chip, 2017, 17, 521-529.
10. T. N. D. Trinh and N. Y. Lee, Lab on a Chip, 2018, 18, 2369-2377.
11. C. Wang, R. Li, S. Quan, P. Shen, D. Zhang, J. Shi and L. Yang, Analytical and bioanalytical chemistry, 2015, 407, 4829-4834.
12. N. A. Tanner, Y. Zhang and T. C. Evans Jr, Biotechniques, 2015, 58, 59-68.
13. I. Choopara, N. Arunrut, W. Kiatpathomchai, D. Dean and N. Somboonna, Letters in Applied Microbiology, 2017, 64, 51-56.
14. X. Wang, Z. Fu, X. Chen, C. Peng, X. Xu, W. Wei, F. Li and J. Xu, Analytical and bioanalytical chemistry, 2017, 409, 881-889.
15. D. Kala, T. K. Sharma, S. Gupta, R. V. Saini, A. K. Saini, W. F. Alsanie, V. K. Thakur and A. Kaushal, Chemosphere, 2022, 300, 134428.
16. S. Cajigas, D. Alzate and J. Orozco, Microchimica Acta, 2020, 187, 1-10.
17. A. Bajaj, A. M. Shrivastav, E. Eltzov, N. Alkan and I. Abdulhalim, Talanta, 2021, 235, 122776.
18. M. Mansouri, F. Fathi, R. Jalili, S. Shoeibie, S. Dastmalchi, A. Khataee and M.-R. Rashidi, Food chemistry, 2020, 331, 127163.
19. M. Askaravi, S. E. Rezatofighi, S. Rastegarzadeh and M. R. Seifi Abad Shapouri, AMB Express, 2017, 7, 1-9.
20. A. Muangchuen, P. Chaumpluk, A. Suriyasomboon and S. Ekgasit, Sensors, 2014, 14, 14472-14487.
21. B. Hu, J. Guo, Y. Xu, H. Wei, G. Zhao and Y. Guan, Analytical and bioanalytical chemistry, 2017, 409, 4819-4825.
22. J. J. Storhoff, A. D. Lucas, V. Garimella, Y. P. Bao and U. R. Müller, Nature biotechnology, 2004, 22, 883-887.
23. L. Soares, A. Csáki, J. Jatschka, W. Fritzsche, O. Flores, R. Franco and E. Pereira, Analyst, 2014, 139, 4964-4973.
24. M. Jauset-Rubio, M. Svobodová, T. Mairal, C. McNeil, N. Keegan, A. Saeed, M. N. Abbas, M. S. El-Shahawi, A. S. Bashammakh and A. O. Alyoubi, Scientific reports, 2016, 6, 1-10.
25. S. Kaye, Z. Zeng, M. Sanders, K. Chittur, P. M. Koelle, R. Lindquist, U. Manne, Y. Lin and J. Wei, Analyst, 2017, 142, 1974-1981.
26. T. s. Lednický and A. Bonyár, ACS applied materials & interfaces, 2020, 12, 4804-4814.
27. L. Xie, X. Yan and Y. Du, Biosensors and Bioelectronics, 2014, 53, 58-64.
28. D.-Z. Lin, P.-C. Chuang, P.-C. Liao, J.-P. Chen and Y.-F. Chen, Biosensors and Bioelectronics, 2016, 81, 221-228.
29. I. Byun and J. Kim, Journal of Micromechanics and Microengineering, 2010, 20, 055024.
30. J. C. Hulteen and R. P. Van Duyne, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995, 13, 1553-1558.
31. A. A. Tseng, K. Chen, C. D. Chen and K. J. Ma, IEEE Transactions on electronics packaging manufacturing, 2003, 26, 141-149.
32. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996, 14, 4129-4133.
33. S.-H. Yeom, O.-G. Kim, B.-H. Kang, K.-J. Kim, H. Yuan, D.-H. Kwon, H.-R. Kim and S.-W. Kang, Optics express, 2011, 19, 22882-22891.
34. P. Benjamin and C. Weaver, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1960, 254, 177-183.
35. H. Shen, N. Guillot, J. Rouxel, M. L. de la Chapelle and T. Toury, Optics Express, 2012, 20, 21278-21290.
36. T. G. Habteyes, S. Dhuey, E. Wood, D. Gargas, S. Cabrini, P. J. Schuck, A. P. Alivisatos and S. R. Leone, ACS nano, 2012, 6, 5702-5709.
37. A. Steel, R. Levicky, T. Herne and M. J. Tarlov, Biophysical journal, 2000, 79, 975-981.
38. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger, Journal of the American Chemical Society, 1998, 120, 1959-1964.
39. H. D. Hill, J. E. Millstone, M. J. Banholzer and C. A. Mirkin, ACS nano, 2009, 3, 418-424.
40. S. J. Hurst, A. K. Lytton-Jean and C. A. Mirkin, Analytical chemistry, 2006, 78, 8313-8318.
41. X. Zhang, M. R. Servos and J. Liu, Journal of the American Chemical Society, 2012, 134, 7266-7269.
42. S. A. Maier, Plasmonics: fundamentals and applications, Springer, 2007.
43. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, Journal, 2003, 107, 668-677.
44. W.-H. Chen, Y.-T. Tseng, S. Hsieh, W.-C. Liu, C.-W. Hsieh, C.-W. Wu, C.-H. Huang, H.-Y. Lin, C.-W. Chen and P.-Y. Lin, RSC Advances, 2014, 4, 46527-46535.
45. T.-J. Lee, L.-K. Chau and C.-J. Huang, Langmuir, 2020, 36, 5935-5943.
46. N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi and A. Revzin, Analytical chemistry, 2010, 82, 1851-1857.
47. T. M. Squires, R. J. Messinger and S. R. Manalis, Nature biotechnology, 2008, 26, 417-426.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90012-
dc.description.abstract侷限型表面電漿共振感測技術因其無需標記、即時性和增強光學信號等特性,在生物感測領域引起了廣泛關注。然而,局限型表面電漿共振感測器的靈敏度不夠高,無法量測到低濃度的生物分子。在本研究中,我們提出了加入奈米金粒 (AuNPs)作為信號增強源來提高表面電漿共振感測器靈敏度的方法。為了實現這一目標,我們利用週期為125 nm、直徑為80 nm的陽極氧化鋁(AAO)模板製備奈米金圓盤陣列於玻璃基板上。在沉積金層之前,我們在玻璃基板上修飾上了一層硫醇基丙基三甲氧基矽烷(MPTMS)薄膜,以提高金與玻璃的黏附性,接著沉積20 nm厚的金,最後剝離陽極氧化鋁,我們便會得到一片具有奈米金盤陣列的陽極氧化鋁感測器。將微流道黏附在感測器上,並連接到LabSmith微流道控制系統,我們便能實現自動化的檢測。在本研究中,我們將陽極氧化鋁感測器應用於感測炭疽真菌(Colletotrichum gloeosporioides,C. gloeosporioides)的基因序列,在沒有奈米金粒增強訊號的情況下,檢測極限為2.5 nM。為了進一步提高檢測極限,我們加入了經ssDNA修飾的奈米金粒(直徑為100 nm),並採用了與目標DNA競爭奈米金盤陣列上探針的檢測方法。值得注意的是,若目標DNA濃度落在0.025 nM至2.5 nM範圍內,目標DNA造成的紅移量在沒有奈米金粒增強的情況下無法區分出差異,在加入了奈米金粒之後,紅移量的差異可被提高並呈現和濃度具有相依關係,使得檢測極限可以到達0.025 nM。本研究提出此競爭型檢測方法結合了微流道系統,實現了可重複且準確的目標檢測。這對於生物分析技術在診斷和生物醫學研究等領域的發展具有重要意義。zh_TW
dc.description.abstractThe localized surface plasmon resonance (LSPR) sensing technique has gained attention in biosensing due to its label-free, real-time, and optical characteristics. However, LSPR suffers from limited sensitivity. In this thesis, we propose enhancing the sensitivity of the LSPR sensor by incorporating gold nanoparticles (AuNPs) to leverage the plasmonic coupling effect. We used anodic aluminum oxide (AAO) with 125 nm periodicity and 80 nm diameter as the template. After coating the glass substrate with (3-Mercaptopropyl)trimethoxysilane (MPTMS), we deposited a 20 nm gold layer and performed AAO lift-off, resulting in an AAO-LSPR sensor. Furthermore, we integrated the sensor with a microfluidic channel and a LabSmith microfluidics controller to enable automated target detection.
In this research, we functionalized the nucleic acid sensor with single-stranded DNA (ssDNA) probes specific to Colletotrichum gloeosporioides (C. gloeosporioides) genetic DNA detection. To improve the limit of detection, we introduced 100 nm diameter ssDNA-modified AuNPs and employed a competitive assay approach with the target DNA. The results showed a clear linear relationship between target concentrations ranging from 0.025 nM to 2.5 nM. Notably, differentiating concentrations within this range without the AuNP enhancement proved exceedingly challenging. The proposed competitive detection method, combining microfluidic systems, enables repeatable and accurate target detection, which holds significant importance for the development of bioanalytical techniques in diagnostics and biomedical research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:03:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:03:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Research background 1
1.1.1 Nucleic acid 1
1.1.2 Colletrichum 2
1.2 Literature review 3
1.2.1 DNA sensing methods 3
1.2.2 Plasmonic sensors for DNA sensing 7
1.2.3 Metal structure fabrication methods 16
1.2.4 Enhancement of gold and silicon oxide adhesion 17
1.2.5 Functionalization of gold substrates 18
1.2.6 Functionalization of gold nanoparticles 20
1.2.7 Research motivation 22
Chapter 2 LSPR theory 23
Chapter 3 Materials and methods 26
3.1 Fabrication of AAO LSPR chip 26
3.1.1 MPTMS modification on silicone oxide 26
3.1.2 Gold nanodisks formation on silicone oxide substrates 26
3.1.3 Particle analysis 29
3.1.4 Probe surface modification of substrates 30
3.2 Fabrication of ssDNA functionalized AuNPs 31
3.3 Real-time absorbance spectrum processing 31
3.4 Optical setup and automated microfluidics control system 33
Chapter 4 Results and discussion 35
4.1 Absorbance spectrum post processing 35
4.2 Particle analysis and chip uniformity 35
4.3 Chip sensitivity and robustness 38
4.4 DNA functionalization 40
4.4.1 AuNP DNA functionalization 40
4.4.2 Surface modification and target sensing using TronViEWER 42
4.4.3 Probe density optimization 43
4.5 ssDNA detection w/o AuNP enhancement 46
4.5.1 Flow rate optimization 46
4.5.2 Target ssDNA detection 48
4.5.3 Nontarget ssDNA detection 51
4.6 ssDNA detection w/ AuNP enhancement 51
Chapter 5 Conclusion 57
Chapter 6 Future work 58
REFERENCE 60
-
dc.language.isoen-
dc.subject表面電漿子zh_TW
dc.subject靈敏度zh_TW
dc.subject奈米金粒zh_TW
dc.subject核酸感測zh_TW
dc.subject硫醇基丙基三甲氧基矽烷zh_TW
dc.subject電漿子耦合zh_TW
dc.subject陽極氧化鋁zh_TW
dc.subjectAAOen
dc.subjectLSPRen
dc.subjectSensitivityen
dc.subjectAuNPsen
dc.subjectMPTMSen
dc.subjectNucleic acid sensoren
dc.subjectPlasmonic couplingen
dc.title奈米金粒增強侷限型表面電漿共振感測器結合微流道晶片用於病原體核酸檢測zh_TW
dc.titleGold nanoparticle enhanced localized surface plasmon resonance sensor integrating microfluidics for pathogen DNA detectionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕帆;林鼎晸;林致廷zh_TW
dc.contributor.oralexamcommitteeYih-Fan Chen;Ding-Zheng Lin;Chig-Ting Linen
dc.subject.keyword表面電漿子,陽極氧化鋁,電漿子耦合,硫醇基丙基三甲氧基矽烷,核酸感測,奈米金粒,靈敏度,zh_TW
dc.subject.keywordLSPR,AAO,Plasmonic coupling,MPTMS,Nucleic acid sensor,AuNPs,Sensitivity,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202303526-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved