Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖zh_TW
dc.contributor.advisorJeffrey Chi-Sheng Wuen
dc.contributor.author嚴毅zh_TW
dc.contributor.authorYi Yenen
dc.date.accessioned2023-09-22T17:02:11Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation1. An, M.D., L.M. Western, D. Say, L.Q. Chen, T. Claxton, A.L. Ganesan, R. Hossaini, P.B. Krummel, A.J. Manning, J. Muhle, S. O'Doherty, R.G. Prinn, R.F. Weiss, D. Young, J.X. Hu, B. Yao, and M. Rigby, Rapid increase in dichloromethane emissions from China inferred through atmospheric observations. Nature Communications, 2021. 12(1).
2. He, C., J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 2019. 119(7): p. 4471-4568.
3. Ojala, S., S. Pitkäaho, T. Laitinen, N. Niskala Koivikko, R. Brahmi, J. Gaálová, L. Matejova, A. Kucherov, S. Päivärinta, C. Hirschmann, T. Nevanperä, M. Riihimäki, M. Pirilä, and R.L. Keiski, Catalysis in VOC Abatement. Topics in Catalysis, 2011. 54(16): p. 1224.
4. Li, W.B., J.X. Wang, and H. Gong, Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 2009. 148(1): p. 81-87.
5. Bari, M.A. and W.B. Kindzierski, Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Sci Total Environ, 2018. 631-632: p. 627-640.
6. Chang, T., Y. Wang, Y. Wang, Z. Zhao, Z. Shen, Y. Huang, S.K.P. Veerapandian, N. De Geyter, C. Wang, Q. Chen, and R. Morent, A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Science of The Total Environment, 2022. 828: p. 154290.
7. Schiavon, M., V. Torretta, A. Casazza, and M. Ragazzi, Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: a Review. Water, Air, & Soil Pollution, 2017. 228(10): p. 388.
8. van der Vaart, D.R., W.M. Vatvuk, and A.H. Wehe, Thermal and Catalytic Incinerators for the Control of VOCs. Journal of the Air & Waste Management Association, 1991. 41(1): p. 92-98.
9. Cao, S., H. Wang, F. Yu, M. Shi, S. Chen, X. Weng, Y. Liu, and Z. Wu, Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2. J Colloid Interface Sci, 2016. 463: p. 233-41.
10. Bahri, M. and F. Haghighat, Plasma-Based Indoor Air Cleaning Technologies: The State of the Art-Review. CLEAN - Soil, Air, Water, 2014. 42(12): p. 1667-1680.
11. Feng, X., H. Liu, C. He, Z. Shen, and T. Wang, Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review. Catalysis Science & Technology, 2018. 8(4): p. 936-954.
12. Qin, C., H. Guo, P. Liu, W. Bai, J. Huang, X. Huang, X. Dang, and D. Yan, Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with γ-Al2O3, TiO2 or BaTiO3. Journal of Industrial and Engineering Chemistry, 2018. 63: p. 449-455.
13. Zhu, B., Y. Yan, M. Li, X.S. Li, J.L. Liu, and Y.M. Zhu, Low temperature removal of toluene over Ag/CeO2/Al2O3 nanocatalyst in an atmospheric plasma catalytic system. Plasma Processes and Polymers, 2018. 15(8).
14. Fan, H.Y., C. Shi, X.S. Li, D.Z. Zhao, Y. Xu, and A.M. Zhu, High-efficiency plasma catalytic removal of dilute benzene from air. Journal of Physics D-Applied Physics, 2009. 42(22).
15. Hossaini, R., M.P. Chipperfield, S.A. Montzka, A.A. Leeson, S.S. Dhomse, and J.A. Pyle, The increasing threat to stratospheric ozone from dichloromethane. Nature Communications, 2017. 8(1): p. 15962.
16. Donnelly, V.M. and A. Kornblit, Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050825.
17. Coburn, J.W. and H.F. Winters, Plasma etching—A discussion of mechanisms. Journal of vacuum Science and Technology, 1979. 16(2): p. 391-403.
18. Pelletier, J. and A. Anders, Plasma-based ion implantation and deposition: A review of physics, technology, and applications. IEEE Transactions on Plasma Science, 2005. 33(6): p. 1944-1959.
19. Thomae, R.W., Plasma-immersion ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1998. 139(1): p. 37-42.
20. Chu, P.K., J.Y. Chen, L.P. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5): p. 143-206.
21. Bo, Z., J. Zhu, S. Yang, H. Yang, J. Yan, and K. Cen, Enhanced plasma-catalytic decomposition of toluene over Co-Ce binary metal oxide catalysts with high energy efficiency. RSC Adv, 2019. 9(13): p. 7447-7456.
22. Pappas, D., Status and potential of atmospheric plasma processing of materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29(2): p. 020801.
23. Sabat, K.C., Physics and chemistry of solid state direct reduction of iron ore by hydrogen plasma. Physics and Chemistry of Solid State, 2021. 22(2): p. 292-300.
24. Adelodun, A.A., Influence of Operation Conditions on the Performance of Non-thermal Plasma Technology for VOC Pollution Control. Journal of Industrial and Engineering Chemistry, 2020. 92: p. 41-55.
25. Schutze, A., J.Y. Jeong, S.E. Babayan, P. Jaeyoung, G.S. Selwyn, and R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
26. Nishimura, J., T. Kawamura, K. Takahashi, Y. Teramoto, K. Takaki, S. Koide, M. Suga, T. Orikasa, and T. Uchino, Removal of Ethylene and By‐Products Using Packed Bed Dielectric Barrier Discharge with Ag Nanoparticle‐Loaded Zeolite. Electronics and Communications in Japan, 2017. 100(2): p. 3-11.
27. Jiang, L.Y., G.F. Nie, R.Y. Zhu, J.D. Wang, J.M. Chen, Y.B. Mao, Z.W. Cheng, and W.A. Anderson, Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts. Journal of Environmental Sciences, 2017. 55: p. 266-273.
28. Dahiru, U.H., F. Saleem, K. Zhang, and A.P. Harvey, Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: Influence of different parameters. Journal of Environmental Chemical Engineering, 2021. 9(1): p. 105023.
29. Ibrahim, J., S.A. Al-Bataineh, A. Michelmore, and J.D. Whittle, Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application. Plasma Chemistry and Plasma Processing, 2021. 41(1): p. 47-83.
30. Meyer, C., S. Müller, E. Gurevich, and J. Franzke, Dielectric barrier discharges in analytical chemistry. Analyst, 2011. 136(12): p. 2427-2440.
31. Brandenburg, R., Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 2017. 26(5): p. 053001.
32. Conrads, H. and M. Schmidt, Plasma generation and plasma sources. Plasma Sources Science and Technology, 2000. 9(4): p. 441.
33. Wagner, H.E., R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, and J.F. Behnke, The barrier discharge: basic properties and applications to surface treatment. Vacuum, 2003. 71(3): p. 417-436.
34. Ashpis, D.E., M.C. Laun, and E.L. Griebeler, Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. AIAA Journal, 2017. 55(7): p. 2254-2268.
35. Jiang, N., C. Qiu, L.J. Guo, K.F. Shang, N. Lu, J. Li, and Y. Wu, Post Plasma-Catalysis of Low Concentration VOC Over Alumina-Supported Silver Catalysts in a Surface/Packed-Bed Hybrid Discharge Reactor. Water Air and Soil Pollution, 2017. 228(3).
36. Kriegseis, J., B. Möller, S. Grundmann, and C. Tropea, Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. Journal of Electrostatics, 2011. 69(4): p. 302-312.
37. Fitzsimons, C., F. Ismail, J.C. Whitehead, and J.J. Wilman, The chemistry of dichloromethane destruction in atmospheric-pressure gas streams by a dielectric packed-bed plasma reactor. Journal of Physical Chemistry A, 2000. 104(25): p. 6032-6038.
38. Chung, W.C., D.H. Mei, X. Tu, and M.B. Chang, Removal of VOCs from gas streams via plasma and catalysis. Catalysis Reviews-Science and Engineering, 2019. 61(2): p. 270-331.
39. Karatum, O. and M.A. Deshusses, A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chemical Engineering Journal, 2016. 294: p. 308-315.
40. Li, Y., Z. Fan, J. Shi, Z. Liu, and W. Shangguan, Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts. Chemical Engineering Journal, 2014. 241: p. 251-258.
41. Abd Allah, Z., J.C. Whitehead, and P. Martin, Remediation of Dichloromethane (CH2Cl2) Using Non-thermal, Atmospheric Pressure Plasma Generated in a Packed-Bed Reactor. Environmental Science & Technology, 2014. 48(1): p. 558-565.
42. Jiang, N., N. Lu, K.F. Shang, J. Li, and Y. Wu, Innovative Approach for Benzene Degradation Using Hybrid Surface/Packed-Bed Discharge Plasmas. Environmental Science & Technology, 2013. 47(17): p. 9898-9903.
43. Valdivia-Barrientos, R., J. Pacheco-Sotelo, M. Pacheco-Pacheco, J.S. Benítez-Read, and R. López-Callejas, Analysis and electrical modelling of a cylindrical DBD configuration at different operating frequencies. Plasma Sources Science and Technology, 2006. 15(2): p. 237.
44. Jahanmiri, A., M.R. Rahimpour, M. Mohamadzadeh Shirazi, N. Hooshmand, and H. Taghvaei, Naphtha cracking through a pulsed DBD plasma reactor: Effect of applied voltage, pulse repetition frequency and electrode material. Chemical Engineering Journal, 2012. 191: p. 416-425.
45. Jiang, N., Y. Zhao, K. Shang, N. Lu, J. Li, and Y. Wu, Degradation of toluene by pulse-modulated multistage DBD plasma: Key parameters optimization through response surface methodology (RSM) and degradation pathway analysis. J Hazard Mater, 2020. 393: p. 122365.
46. Yao, X., N. Jiang, J. Li, N. Lu, K. Shang, and Y. Wu, An improved corona discharge ignited by oxide cathodes with high secondary electron emission for toluene degradation. Chemical Engineering Journal, 2019. 362: p. 339-348.
47. Vandenbroucke, A.M., R. Aerts, W. Van Gaens, N. De Geyter, C. Leys, R. Morent, and A. Bogaerts, Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge. Plasma Chemistry and Plasma Processing, 2015. 35(1): p. 217-230.
48. Li, S.J., X. Yu, X.Q. Dang, X.K. Meng, Y.F. Zhang, and C.H. Qin, Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021. 9(6).
49. Xia, T., S. Yao, Z. Wu, G. Li, and J. Li, High ratio of Ce3+/(Ce3++Ce4+) enhanced the plasma catalytic degradation of n-undecane on CeO2/γ-Al2O3. Journal of Hazardous Materials, 2022. 424: p. 127700.
50. Yu, X., X. Dang, S. Li, X. Meng, H. Hou, P. Wang, and Q. Wang, Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. 298: p. 134274.
51. Jiang, N., J. Hu, J. Li, K.F. Shang, N. Lu, and Y. Wu, Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B-Environmental, 2016. 184: p. 355-363.
52. Yu, Y.Y., E.X. Wu, Y. Chen, Z.H. Feng, S.J. Zheng, H. Zhang, W. Pang, J. Liu, and D.H. Zhang, Volatile organic compounds discrimination based on dual mode detection. Nanotechnology, 2018. 29(24).
53. Yao, S.L., Z.Z. Chen, H. Xie, Y.C. Yuan, R.W. Zhou, B.Q. Xu, J.X. Chen, X.Y. Wu, Z.L. Wu, B.Q. Jiang, X.J. Tang, H. Lu, T. Nozaki, and H.H. Kim, Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor. Chemosphere, 2020. 247.
54. Robinson, J.W., E.S. Frame, and G.M. Frame II, Undergraduate instrumental analysis. 2014: CRC press.
55. Cruz, D., J. Chang, S. Showalter, F. Gelbard, R. Manginell, and M. Blain, Microfabricated thermal conductivity detector for the micro-ChemLab™. Sensors and Actuators B: Chemical, 2007. 121(2): p. 414-422.
56. Kitson, F.G., B.S. Larsen, and C.N. McEwen, Chapter 1 - What Is GC/MS?, in Gas Chromatography and Mass Spectrometry, F.G. Kitson, B.S. Larsen, and C.N. McEwen, Editors. 1996, Academic Press: San Diego. p. 3-23.
57. Mikla, V.I., J.M. Turovci, V.V. Mikla, and N. Mehta, Molecular structure of Se-rich amorphous films. Progress in Solid State Chemistry, 2018. 49: p. 1-15.
58. Stevie, F.A. and C.L. Donley, Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 2020. 38(6).
59. Moulder, J.F., W.F. Stickle, W.M. Sobol, and K.D. Bomben. Handbook of X-Ray Photoelectron Spectroscopy. 1992.
60. Li, W., T. Ma, Y. Zhang, Y. Gong, Z. Wu, and T. Dou, Facile control of inter-crystalline porosity in the synthesis of size-controlled mesoporous MFI zeolites via in situ conversion of silica gel into zeolite nanocrystals for catalytic cracking. CrystEngComm, 2015. 17(30): p. 5680-5689.
61. Wang, B., H. Wang, G. Liu, X. Li, and J. Wu, Conversion of dimethyl ether to toluene under an O2 stream over W/HZSM-5 catalysts. Catalysis Science & Technology, 2015. 5(3): p. 1813-1820.
62. Zhang, W., D. Yu, X. Ji, and H. Huang, Efficient dehydration of bio-based 2,3-butanediol to butanone over boric acid modified HZSM-5 zeolites. Green Chemistry, 2012. 14(12).
63. Gao, Y., B. Zheng, G. Wu, F. Ma, and C. Liu, Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization. RSC Advances, 2016. 6(87): p. 83581-83588.
64. Zeng, X.L., B. Li, R.Q. Liu, X. Li, and T.L. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chemical Engineering Journal, 2020. 384.
65. Ben Younes, N., J.M. Ortigosa, O. Marie, T. Blasco, and M. Mhamdi, Effect of zeolite structure on the selective catalytic reduction of NO with ammonia over Mn-Fe supported on ZSM-5, BEA, MOR and FER. Research on Chemical Intermediates, 2021. 47(5): p. 2003-2028.
66. Kim, J., J.E. Lee, H.W. Lee, J.K. Jeon, J. Song, S.C. Jung, Y.F. Tsang, and Y.K. Park, Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. J Hazard Mater, 2020. 397: p. 122577.
67. Zhu, X., X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng, and X. Tu, Plasma-catalytic removal of formaldehyde over Cu–Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 2015. 170-171: p. 293-300.
68. Li, S., X. Yu, X. Dang, P. Wang, X. Meng, Q. Wang, and H. Hou, Double dielectric barrier discharge incorporated with CeO2-Co3O4/γ-Al2O3 catalyst for toluene abatement by a sequential adsorption–discharge plasma catalytic process. Journal of Cleaner Production, 2022. 340.
69. Qin, L.-b., B. Zhao, W.S. Chen, X. Liu, and J. Han, Refluxing-coprecipitation to synthesize Fex−Mny/γ-Al2O3 catalyst for toluene removal in a nonthermal plasma-catalysis reactor. Molecular Catalysis, 2022.
70. Qin, L., B. Zhao, W. Chen, Y. Han, Y. Wan, L. Liu, H. Lu, and J. Han, Simultaneous removal of toluene and chlorobenzene in a nonthermal plasma-catalysis reactor packed with Fe1-Mn1/γ-Al2O3. Journal of Cleaner Production, 2022. 363: p. 132611.
71. Yu, X., X. Dang, S. Li, Y. Li, H. Wang, K. Jing, H. Dong, and X. Liu, Enhanced activity of plasma catalysis for trichloroethylene decomposition via metal-support interaction of Si—O—Co/Mn bonds over CoMnOX/ZSM-5. Separation and Purification Technology, 2023. 305.
72. Falkenstein, Z., Effects of the O2 concentration on the removal efficiency of volatile organic compounds with dielectric barrier discharges in Ar and N2. Journal of Applied Physics, 1999. 85(1): p. 525-529.
73. Hagelaar, G. and L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma sources science and technology, 2005. 14(4): p. 722.
74. Phelps, A. and L. Pitchford, Anisotropic scattering of electrons by N2 and its effect on electron transport. Physical Review A, 1985. 31(5): p. 2932.
75. Pinnaduwage, L.A., C. Tav, D.L. McCorkle, and W.X. Ding, Temperature dependence of electron attachment to methylene chloride. The Journal of Chemical Physics, 1999. 110(18): p. 9011-9016.
76. Chen, Y.S., K.L. Pan, and M.B. Chang, Application of plasma catalysis system for C4F8 removal. Environmental Science and Pollution Research, 2021. 28(41): p. 57619-57628.
77. Li, S., Y. Li, X. Yu, X. Dang, X. Liu, and L. Cao, A novel double dielectric barrier discharge reactor for toluene abatement: Role of different discharge zones and reactive species. Journal of Cleaner Production, 2022. 368: p. 133073.
78. Pan, K.L., Y.S. Chen, and M.B. Chang, Effective Removal of CF4 by Combining Nonthermal Plasma with γ-Al2O3. Plasma Chemistry and Plasma Processing, 2019. 39(4): p. 877-896.
79. Penetrante, B.M., M.C. Hsiao, J.N. Bardsley, B.T. Merritt, G.E. Vogtlin, A. Kuthi, C.P. Burkhart, and J.R. Bayless, Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing. Plasma Sources Science and Technology, 1997. 6(3): p. 251.
80. Huang, L., K. Nakajo, S. Ozawa, and H. Matsuda, Decomposition of dichloromethane in a wire-in-tube pulsed corona reactor. Environmental Science & Technology, 2001. 35(6): p. 1276-1281.
81. Allah, Z.A., D. Sawtell, V.L. Kasyutich, and P.A. Martin, FTIR and QCL diagnostics of the decomposition of volatile organic compounds in an atmospheric pressure dielectric packed bed plasma reactor. Journal of Physics: Conference Series, 2009. 157(1): p. 012001.
82. Indarto, A., J.-W. Choi, H. Lee, and H. Keun Song, Treatment of Dichloromethane Using Gliding Arc Plasma. International Journal of Green Energy, 2006. 3(3): p. 309-321.
83. Zhang, C., C. Wang, W. Hua, Y. Guo, G. Lu, S. Gil, and A. Giroir-Fendler, Relationship between catalytic deactivation and physicochemical properties of LaMnO3 perovskite catalyst during catalytic oxidation of vinyl chloride. Applied Catalysis B: Environmental, 2016. 186: p. 173-183.
84. de Rivas, B., R. López-Fonseca, J.R. González-Velasco, and J.I. Gutiérrez-Ortiz, On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts. Journal of Molecular Catalysis A: Chemical, 2007. 278(1): p. 181-188.
85. Barbera, K., S. Sørensen, S. Bordiga, J. Skibsted, H. Fordsmand, P. Beato, and T.V.W. Janssens, Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO2. Catalysis Science & Technology, 2012. 2(6): p. 1196-1206.
86. Wang, T., S. Chen, H. Wang, Z. Liu, and Z. Wu, In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism. Chinese Journal of Catalysis, 2017. 38(5): p. 793-803.
87. Pan, K.L. and M.B. Chang, Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD. Environ Sci Pollut Res Int, 2019. 26(13): p. 12948-12962.
88. Penetrante, B.M., M.C. Hsiao, J.N. Bardsley, B.T. Merritt, G.E. Vogtlin, A. Kuthi, C.P. Burkhart, and J.R. Bayless, Decomposition of methylene chloride by electron beam and pulsed corona processing. Physics Letters A, 1997. 235(1): p. 76-82.
89. Iijima, S., M. Nakamura, A. Yokoi, M. Kubota, L.W. Huang, and H. Matsuda, Decomposition of dichloromethane and in situ alkali absorption of resulting halogenated products by a packed-bed non-thermal plasma reactor. Journal of Material Cycles and Waste Management, 2011. 13(3): p. 206-212.
90. Wallis, A.E., J.C. Whitehead, and K. Zhang, The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Applied Catalysis B-Environmental, 2007. 72(3-4): p. 282-288.
91. Wallis, A.E., J.C. Whitehead, and K. Zhang, The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Applied Catalysis B-Environmental, 2007. 74(1-2): p. 111-116.
92. Hussein, M.U. and T.H. Khalaf, The effect of Dielectric Thickness on Dielectric Barrier Discharge properties at Atmospheric Pressure. Engineering and Technology Journal, 2015. 33(6 Part (B) Scientific).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90008-
dc.description.abstract二氯甲烷(CH2Cl2)是一種工業上常見的含氯揮發性有機化合物(CVOC),其排放不僅對人類健康和環境產生有害影響,更是減緩了臭氧層的恢復。目前工業上主要是利用觸媒催化燃燒的方式來去除氣流中的二氯甲烷,但二氯甲烷中的氯原子會毒化觸媒,導致後續的處理效率下降。因此發展一個全新方式來去除工廠廢氣中的二氯甲烷有其必要性。
本研究利用自行設計的介電質屏蔽放電型電漿反應器結合不同觸媒來處理含有 ppm 濃度等級 CH2Cl2 之工廠模擬廢氣,利用電漿產生大量高能活性物質與二氯甲烷非彈性碰撞後達到分解效果,預期將二氯甲烷高效降解成HCl、CO2等產物。本文中分別使用兩種氣體作為載流氣體,分別為0.23%氧氣加上氮氣以及空氣,在未使用觸媒、氣體流速1040 mL/min、滯留時間76.72 ms、二氯甲烷進料濃度1650 ppm、接近電能使用(~10 W)的條件下,使用0.23%氧氣加上氮氣作為載流氣體時可以到達98.7%的二氯甲烷移除率而空氣卻只能達到71.2%。至於降解後的含氯產物,在11 kVpp、20 kHz的輸入電壓下,0.23%氧氣加上氮氣中鹽酸的生成超過了80%,但仍有約13.8%的CCl4、1.7%的CHCl3生成;以空氣作為載流氣體時,鹽酸選擇率則為56%,同時伴隨著HClO(~22%)、CCl4(7.04%)的生成。
考量到純電漿降解過程中經常伴隨氯仿、四氯化碳等有毒副產物,因此嘗試在電漿放電區域中加入200 mg觸媒,希望藉此來改變降解的最終產物。研究發現在電漿與觸媒的共同作用下,二氯甲烷平均移除率、產物選擇率均有顯著的改善,以空氣作為載流氣體為例,表現最佳的觸媒Co3O4/HZSM-5在相同的電能使用下提升了44%的移除率,在抑制四氯化碳的生成同時提升鹽酸的選擇率(~80.4%)。此外,本研究應用XRD、SEM、EDS、XPS等儀器對觸媒的特性進行測定分析,並針對觸媒活性結果進行了說明。
zh_TW
dc.description.abstractDichloromethane (CH2Cl2, DCM) is a common chlorine-containing volatile organic compound (CVOC) widely used in various industrial processes. However, its release into the environment can have harmful effects on both human health and the environment, especially in slowing down ozone recovery. As a result, there is a growing need for effective methods to remove DCM from industrial exhaust gas streams.
In this study, we used a self-designed Dielectric Barrier Discharge (DBD) reactor combined with different catalysts, to treat exhaust gas streams containing ppm-level concentrations of DCM. The plasma system generated a large number of high-energy reactive species, which degraded DCM in the exhaust gas into HCl and CO2. Two different carrier gases were used in this research: 0.23% O2 balanced with N2 and air. Under the conditions of no catalyst, a gas flow rate of 1040 mL/min, a residence time of 76.72 ms, a DCM feed concentration of 1650 ppm, and an approximate power usage of 10 W, DCM removal efficiency is 98.7% under 0.23% O2 balanced with N2, while DCM removal efficiency is only 71.2% under air atmosphere condition. However, it was considered that although the plasma was highly reactive, there were often chlorine-containing byproducts produced during the decomposition process. For example, at an input voltage of 11 kVpp and frequency of 20 kHz, using 0.23% O2 balanced with N2 as carrier gas, it exhibited over 80% HCl formation, with approximately 13.8% CHCl3 and 1.7% CCl4 formation. In comparison, the HCl selectivity under air atmosphere condition was 56%, accompanied by the formation of HClO (~22%) and CCl4(7.04%).
Considering the presence of toxic byproducts such as CHCl3 and CCl4 during the plasma-alone degradation process, an attempt was made to introduce 200 mg of catalyst into the plasma discharge region to alter the final degradation products. It was found that the average removal efficiency of dichloromethane was significantly enhanced in the presence of plasma and catalyst. Taking air as an example, the best-performing Co3O4/HZSM-5 catalyst achieved a 44% improvement in removal efficiency under the same power consumption, suppressing CCl4 formation while enhancing HCl selectivity (~80.4%) at the same time. In addition, the instruments XRD, SEM, EDS, and XPS were also used to evaluate the characteristics of the catalysts and explain the results of the activity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:02:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:02:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xvi
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機與目標 2
1.3 論文總覽 3
第 2 章 文獻回顧 4
2.1 揮發性有機物 4
2.1.1 揮發性有機物定義、介紹 4
2.1.2 揮發性有機物去除方式 4
2.1.3 二氯甲烷之用途、來源及危害 6
2.2 電漿簡介 8
2.2.1 電漿產生機制 8
2.2.2 崩潰電壓與帕邪定律(Paschen’s law) 9
2.2.3 熱平衡電漿與非熱平衡電漿 11
2.2.4 常見常壓電漿種類 12
2.3 介電質屏蔽放電(Dielectric Barrier Discharge, DBD) 14
2.3.1 DBD系統放電原理 15
2.3.2 DBD系統等效電路 17
2.3.3 利薩如曲線(Lissajous Curve) 19
2.3.4 表面與體積介電質屏蔽放電 22
2.4 電漿處理揮發性有機物 23
2.4.1 反應機制 23
2.4.2 電漿處理揮發性有機物相關參數[38] 24
2.5 電漿結合觸媒處理揮發性有機物 27
2.5.1 電漿結合觸媒相關反應機制 27
2.5.2 相關觸媒選擇 28
第 3 章 研究方法 30
3.1 實驗藥品與儀器設備介紹 30
3.1.1 實驗藥品 30
3.1.2 實驗氣體 30
3.1.3 儀器設備 31
3.2 HZSM-5系列觸媒製備 33
3.3 反應器系統介紹 34
3.3.1 揮發性有機物氣體生成系統 34
3.3.2 觸媒電漿反應器系統 36
3.3.3 偵測分析系統 38
3.3.4 實驗方法 38
3.4 產物分析原理介紹 38
3.4.1 氣相層析儀(Gas Chromatography) 38
3.4.2 氯離子滴定(Chlorine Ion Titration) 42
3.5 檢量線製作 44
3.5.1 氣體進樣流量檢量線校正 44
3.5.2 二氯甲烷檢量線 (GC-TCD) 47
3.5.3 二氯甲烷檢量線 (GC-MS) 48
3.5.4 氯仿檢量線 (GC-MS) 49
3.5.5 四氯化碳檢量線 (GC-MS) 50
3.6 觸媒分析原理介紹 51
3.6.1 X光繞射儀(XRD) 51
3.6.2 場發射掃描式電子顯微鏡(FE-SEM) 52
3.6.3 能量分散光譜儀(EDS) 53
3.6.4 比表面積與孔隙分佈分析儀(ASAP) 53
3.6.5 X光光電子能譜儀(XPS) 54
3.6.6 傅立葉轉換紅外線光譜(FT-IR) 55
3.6.7 熱重分析儀(TGA) 56
第 4 章 觸媒性質分析與討論 57
4.1 XRD結晶繞射分析 57
4.2 場發射掃描式電子顯微分析 60
4.3 能量散佈光譜分析 62
4.4 比表面積分析 65
4.5 X光光電子能譜分析 66
第 5 章 電漿催化降解結果與討論 72
5.1 數據計算方式 72
5.1.1 二氯甲烷移除率(Removal Efficiency) 72
5.1.2 鹽酸選擇率(HCl Selectivity)、產率(HCl Yield) 73
5.1.3 副產物選擇率(By-products Selectivity) 73
5.2 微量氧氣與氮氣氣氛下純電漿系統之移除率表現 74
5.2.1 載流氣體與移除率之關係 74
5.2.2 峰對峰值電壓與移除率之關係 78
5.2.3 初始濃度與移除率之關係 81
5.2.4 滯留時間與移除率之關係 82
5.2.5 氮氣與微量氧氣氣氛下純電漿產物分析 85
5.3 微量氧氣與氮氣氣氛下電漿結合觸媒系統之移除率表現 86
5.3.1 實驗條件 86
5.3.2 觸媒的吸附探討 87
5.3.3 電漿結合觸媒之移除率、產物選擇率之表現 88
5.3.4 使用的觸媒分析 90
5.4 空氣氣氛下純電漿、電漿結合觸媒系統之移除率表現 93
5.4.1 純電漿系統 93
5.4.2 電漿結合觸媒系統 96
5.5 綜合比較 98
5.6 半經驗式模型之可行性 99
5.7 文獻比較 100
第 6 章 電漿電性分析紀錄 103
6.1 DBD電漿電性分析方式 103
6.2 示波器參數選擇 104
6.3 空氣氣氛下電漿電性分析結果 106
6.4 氮氣與微量氧氣氣氛下電漿電性分析結果 110
6.5 電漿電性分析總整理 114
第 7 章 結論與未來展望 116
參考文獻 118
附錄 127
GC-MS 數據處理之依據以及測量之正確性 127
個人小傳 128
-
dc.language.isozh_TW-
dc.subject二氯甲烷zh_TW
dc.subject大氣電漿zh_TW
dc.subject電漿觸媒zh_TW
dc.subject沸石zh_TW
dc.subject含氯有機物處理zh_TW
dc.subjectPlasma-Catalysisen
dc.subjectAtmospheric plasmaen
dc.subjectZeoliteen
dc.subjectDichloromethaneen
dc.subjectCVOC treatmenten
dc.title高效觸媒電漿反應器分解含有機氯化物廢氣zh_TW
dc.titleHigh-Efficient Catalytic Plasma Reactor to Decompose Chlorine-Containing Organic Waste Gasen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐振哲;張木彬zh_TW
dc.contributor.oralexamcommitteeCheng-Che Hsu;Moo-Been Changen
dc.subject.keyword二氯甲烷,電漿觸媒,大氣電漿,沸石,含氯有機物處理,zh_TW
dc.subject.keywordDichloromethane,Plasma-Catalysis,Atmospheric plasma,Zeolite,CVOC treatment,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202303206-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-08-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
5.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved