請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89999
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林永松 | zh_TW |
dc.contributor.advisor | Frank Yeong-Sung Lin | en |
dc.contributor.author | 鍾秉諮 | zh_TW |
dc.contributor.author | Ping-Tzu Chung | en |
dc.date.accessioned | 2023-09-22T17:00:02Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | J. C. Brown, T. E. Gerhardt, and E. Kwon, “Risk factors for coronary artery disease”in StatPearls, Treasure Island (FL): StatPearls Publishing, 2022.
Y. H. Kao and N. Better, “D-SPECT: New technology, old tricks,” Journal of Nuclear Cardiology, vol. 23, no. 2, pp. 311–312, 2016 B. Singh, T. M. Bateman, J. A. Case, and G. Heller, “Attenuation artifact, attenuation correction, and the future of myocardial perfusion SPECT,” Journal of Nuclear Cardiology, vol. 14, no. 2, pp. 153–164, 2007. G. V. Heller, J. Links, T. M. Bateman, J. A. Ziffer, E. Ficaro, M. C. Cohen, and R. C. Hendel, “American society of nuclear cardiology and society of nuclear medicine joint position statement: attenuation correction of myocardial perfusion SPECT scintigraphy,” Journal of Nuclear Cardiology, vol. 11, no. 2, pp. 229–230, 2004. J. Betancur, Y. Otaki, M. Motwani, M. B. Fish, M. Lemley, D. Dey, H. Gransar, B. Tamarappoo, G. Germano, T. Sharir, D. S. Berman, and P. J. Slomka, “Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning,” JACC: Cardiovascular Imaging, vol. 11, no. 7, pp. 1000–1009, 2018. R. Arsanjani, D. Dey, T. Khachatryan, A. Shalev, S. W. Hayes, M. Fish, R. Nakanishi, G. Germano, D. S. Berman, and P. Slomka, “Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population,” Journal of Nuclear Cardiology, vol. 22, no. 5, pp. 877–884, 2015. R. Ranjbarzadeh, A. B. Kasgari, S. J. Ghoushchi, S. Anari, M. Naseri, and M. Ben dechache, “Brain tumor segmentation based on deep learning and an attention mech anism using MRI multi-modalities brain images,” Scientific Reports, vol. 11, May 2021. N. Papandrianos, A. Feleki, and E. Papageorgiou, “Exploring classification of SPECT MPI images applying convolutional neural networks,” 25th Pan-Hellenic Conference on Informatics, no. 7, p. 483–489, 2022. M. Biswas, V. Kuppili, L. Saba, D. R. Edla, H. S. Suri, E. Cuadrado-Godia, J. R. Laird, R. T. Marinhoe, J. M. Sanches, A. Nicolaides, and J. S. Suri, “State-of-the-art review on deep learning in medical imaging,” Front Biosci (Landmark Ed), vol. 24, no. 3, pp. 380–406, 2019. D. Shen, G. Wu, and H.-I. Suk, “Deep learning in medical image analysis,” Annual Review of Biomedical Engineering, vol. 19, no. 1, pp. 221–248, 2017. U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, and C. K. Chua, “Auto mated detection of coronary artery disease using different durations of ECG seg ments with convolutional neural network,” Knowledge-Based Systems, vol. 132, pp. 62–71, 2017. S. Kaplan Berkaya, I. Ak Sivrikoz, and S. Gunal, “Classification models for SPECT myocardial perfusion imaging,” Computers in Biology and Medicine, vol. 123, 2020. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” NIPS’12, p. 1097–1105, Curran Associates Inc., 2012. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Con ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, jun 2016. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2017. S. Liu and W. Deng, “Very deep convolutional neural network based image classi fication using small training sample size,” in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 730–734, 2015. M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” Journal of Ambient Intel ligence and Humanized Computing, vol. 14, pp. 3609–3620, Sept. 2021. H. Liu, J. Wu, E. J. Miller, C. Liu, Yaqiang, Liu, and Y.-H. Liu, “Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 48, no. 9, pp. 2793–2800, 2021. C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and multi-view CNNs for object classification on 3D data,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656, 2016. J.-J. Chen, T.-Y. Su, W.-S. Chen, Y.-H. Chang, and H. H.-S. Lu, “Convolutional neural network in the evaluation of myocardial ischemia from CZT SPECT Myocar dial Perfusion Imaging: Comparison to automated quantification,” Applied Sciences, vol. 11, no. 2, p. 514, 2021. C.-L. Ko, S.-S. Lin, C.-W. Huang, Y.-H. Chang, K.-Y. Ko, M.-F. Cheng, S.-Y. Wang, C.-M. Chen, and Y.-W. Wu, “Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT,” Euro pean Journal of Nuclear Medicine and Molecular Imaging, pp. 1–11, 2022. J. Betancur, F. Commandeur, M. Motlagh, T. Sharir, A. J. Einstein, S. Bokhari, M. B. Fish, T. D. Ruddy, P. Kaufmann, A. J. Sinusas, E. J. Miller, T. M. Bateman, S. Dor bala, M. Di Carli, G. Germano, Y. Otaki, B. K. Tamarappoo, D. Dey, D. S. Berman, and P. J. Slomka, “Deep learning for prediction of obstructive disease from fast my ocardial perfusion SPECT: A multicenter study,” JACC: Cardiovascular Imaging, vol. 11, no. 11, pp. 1654–1663, 2018. J. Betancur, L.-H. Hu, F. Commandeur, T. Sharir, A. J. Einstein, M. B. Fish, T. D. Ruddy, P. A. Kaufmann, A. J. Sinusas, E. J. Miller, T. M. Bateman, S. Dorbala, M. Di Carli, G. Germano, Y. Otaki, J. X. Liang, B. K. Tamarappoo, D. Dey, D. S. Berman, and P. J. Slomka, “Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: A multicenter study,” Journal of Nuclear Medicine, vol. 60, no. 5, pp. 664– 670, 2019. I. D. Apostolopoulos, D. I. Apostolopoulos, T. I. Spyridonidis, N. D. Papathana siou, and G. S. Panayiotakis, “Multi-input deep learning approach for cardiovascu lar disease diagnosis using myocardial perfusion imaging and clinical data,” Physica Medica, vol. 84, pp. 168–177, Apr. 2021. N. I. Papandrianos, I. D. Apostolopoulos, A. Feleki, D. J. Apostolopoulos, and E. I. Papageorgiou, “Deep learning exploration for SPECT MPI polar map images clas sification in coronary artery disease,” Annals of Nuclear Medicine, vol. 36, no. 9, pp. 823–833, 2022. T. Iqball and M. A. Wani, “Weighted ensemble model for image classification,” In ternational Journal of Information Technology, vol. 15, pp. 557–564, Jan. 2023. E. Zhang, B. Xue, F. Cao, J. Duan, G. Lin, and Y. Lei, “Fusion of 2d CNN and 3d DenseNet for dynamic gesture recognition,” Electronics, vol. 8, p. 1511, Dec. 2019. G. Holste, S. C. Partridge, H. Rahbar, D. Biswas, C. I. Lee, and A. M. Alessio, “End to-end learning of fused image and non-image features for improved breast cancer classification from mri,” in 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3287–3296, 2021. S.-C. Huang, A. Pareek, R. T. Zamanian, I. Banerjee, and M. P. Lungren, “Mul timodal fusion with deep neural networks for leveraging ct imaging and electronic health record: a case-study in pulmonary embolism detection,” Scientific Reports, vol. 10, 2020. S. El-Sappagh, T. Abuhmed, S. R. Islam, and K. S. Kwak, “Multimodal multitask deep learning model for alzheimer’s disease progression detection based on time series data,” Neurocomputing, vol. 412, pp. 197–215, Oct. M. B. Jabra, A. Koubaa, B. Benjdira, A. Ammar, and H. Hamam, “COVID-19 di agnosis in chest x-rays using deep learning and majority voting,” Applied Sciences, vol. 11, p. 2884, Mar. 2021. K. Y. Win, N. Maneerat, S. Sreng, and K. Hamamoto, “Ensemble deep learning for the detection of COVID-19 in unbalanced chest x-ray dataset,” Applied Sciences, vol. 11, Nov. 2021. A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” Computer Research Repository, 2020. S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for human ac tion recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013. G. Awad, K. Curtis, A. A. Butt, J. Fiscus, A. Godil, Y. Lee, A. Delgado, J. Zhang, E. Godard, B. Chocot, L. Diduch, J. Liu, Y. Graham, , and G. Quénot, “An overview on the evaluated video retrieval tasks at TRECVID 2022,” in Proceedings of TRECVID 2022, 2022. J. Huang and C. Ling, “Using AUC and accuracy in evaluating learning algorithms,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299–310, 2005. S. P. Morgan and J. D. Teachman, “Logistic regression: Description, examples, and comparisons,” Journal of Marriage and Family, vol. 50, no. 4, pp. 929–936, 1988. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, Mar. 1986. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector ma chines,” IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18–28, 1998. G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” in On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pp. 986–996, Springer Berlin Heidelberg, 2003. I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001 work shop on empirical methods in artificial intelligence, vol. 3, pp. 41–46, 2001. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89999 | - |
dc.description.abstract | 本研究主要探討了二維和三維單光子發射計算機斷層攝影(SPECT)心肌灌注影像(MPI),以及深度學習的卷積神經網絡在冠狀動脈疾病(CAD)檢測上的應用。我們的目標是利用這些技術提升醫生進行視覺診斷的準確率。由於深度學習在醫學影像分類方面已取得重要的突破,我們在此研究中採用了多模態模型融合 (Fusion) 來進一步優化對冠狀動脈疾病的識別。
除了從原始的三維 SPECT MPI 影像中提取空間資訊,我們還結合二維極地圖 (Polar Map)和臨床數據進行模型訓練。本研究評估了不同影像預處理技術對模型性能的影響,並探索了多種融合模型方法,將不同類型影像的深度學習模型,以提升診斷準確性的可能性。 根據最新的研究結果,我們在深度學習模型中納入臨床數據後,模型的表現得到了提升。此外,我們還發現將不同類型的模型以串接方式進行融合可以達到最佳效果。本研究還利用序列式多門檻設定進行疾病分類,在冠狀動脈疾病的識別方面,我們開發的深度學習模型利用 SPECT-MPI 和臨床數據的結合,能夠更準確地進行診斷,其 AUC 值達到了 70% 以上。這一效果優於專家的臨床診斷能力,因此有望應用於冠心病的診斷中。 總結而言,這項基於深度學習方法的冠心病診斷研究具有巨大的應用潛力。根據我們的實驗結果,這項研究成果可以作為臨床決策支援系統中的工具,為醫生提供有效的支持,提高冠心病診斷的準確性和效率。透過整合臨床數據和深度學習模型,醫生將能夠更快速且更準確地進行診斷,並提供更適切的治療方案。 | zh_TW |
dc.description.abstract | This study primarily investigated the application of two-dimensional and three-dimensional single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) and deep learning convolutional neural networks in the detection of coronary artery disease (CAD). Our goal was to enhance the accuracy of visual diagnosis for physicians using these techniques. Considering the significant breakthroughs of deep learning in medical image classification, we employed multimodal model fusion in this study to further optimize the identification of coronary artery disease.
In addition to extracting spatial information from the original three-dimensional SPECT MPI images, we also incorporated polar maps and clinical data for model training. The study evaluated the impact of different image preprocessing techniques on model performance and explored various fusion methods to improve diagnostic accuracy through the combination of deep learning models for different types of images. Based on the latest research findings, we observed an improvement in model performance when clinical data was integrated into the deep learning model. Furthermore, we discovered that fusing different types of models through concatenation yielded the best results. The study also employed a sequential multi-threshold approach for disease classification, achieving more accurate diagnosis of coronary artery disease by leveraging the combination of SPECT MPI and clinical data, with an AUC exceeding 70%. This outperformed the clinical diagnostic capabilities of experts in the early stage, suggesting promising applications in coronary heart disease diagnosis. In conclusion, this study on deep learning methods for coronary artery disease diagnosis has significant potential for practical applications. Based on our experimental results, the findings can be integrated into clinical decision support systems as a tool to provide effective support for physicians and improve the accuracy and efficiency of coronary artery disease diagnosis. By integrating clinical data with deep learning models, physicians will be able to diagnose more rapidly and accurately, leading to more appropriate treatment strategies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:00:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:00:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Background Overview 1 1.2 Clinical Challenges and Unmet Needs 3 1.3 Objectives 6 1.4 Thesis Organization 6 Chapter 2 Literature Review 7 2.1 Image Classification using Deep Learning 7 2.2 SPECT-MPI Classification using Deep Learning 8 2.2.1 Raw Images 8 2.2.1.1 2D CNN Methods 9 2.2.1.2 3D CNN Methods 9 2.2.2 Polar Maps 10 2.3 Model Fusion Methods 12 2.3.1 Weighting Methods 12 2.3.2 Concatenation Methods 13 2.3.3 Voting Methods 14 2.4 Summary 15 Chapter 3 Methods 17 3.1 SPECT-MPI Classification Process 17 3.2 Data Preprocessing 20 3.2.1 Slice Interpolation 20 3.2.2 You Only Look Once Cropping 22 3.2.3 U-Net Myocardium Segmentation 23 3.3 Classification Model Architecture 25 3.4 Model Fusion 28 3.4.1 Weighting Method 28 3.4.2 Concatenation Method 29 3.4.3 Voting Method 30 3.5 Sequential Multi-Threshold Method 33 3.6 Evaluation Metrics 36 3.7 Implementation 38 Chapter 4 Experimental Results and Discussion 40 4.1 SPECT-MPI Dataset 40 4.1.1 Clinical Data 41 4.1.2 3D Raw Data 46 4.1.3 2D Polar Map 49 4.2 Experiment Results 49 4.2.1 Experiment 1 - 2D Polar Map 49 4.2.2 Experiment 2 - 3D Raw Data 51 4.2.3 Experiment 3 - Clinical Data 53 4.2.4 Experiment 4 - Model Fusion 56 4.2.4.1 Experiment 4-1 - Concatenation 57 4.2.4.2 Experiment 4-2 - Weighting 59 4.2.4.3 Experiment 4-3 - Voting 63 4.2.4.4 Summary 64 4.2.5 Experiment 5 - Sequential Multi-Threshold Method 65 4.2.6 Study Limitations 69 Chapter 5 Conclusions 76 5.1 Conclusions 76 5.2 Future Works 77 References 80 | - |
dc.language.iso | en | - |
dc.title | 基於 3D 單光子電腦斷層心肌灌流影像的冠狀動脈疾病預測深度學習技術 | zh_TW |
dc.title | Deep Learning-Based Prediction of Coronary Artery Disease Using 3D Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鍾順平;呂俊賢;呂東武;廖辰中 | zh_TW |
dc.contributor.oralexamcommittee | Shun-Ping Chung;Chun-Hsien Lu;Tung-Wu Lu;Chen-Chung Liao | en |
dc.subject.keyword | 深度學習,醫學影像識別,卷積神經網路,單光子電腦斷層心肌灌流影像,冠心病, | zh_TW |
dc.subject.keyword | Deep Learning,Medical Image Recognition,Convolutional Neural Network,Single-Photon Emission Computed Tomography Myocardial Perfusion Imaging,Coronary Artery Disease, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202303670 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-12 | - |
dc.contributor.author-college | 管理學院 | - |
dc.contributor.author-dept | 資訊管理學系 | - |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 1.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。