請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張皓巽 | zh_TW |
| dc.contributor.advisor | Hao-Xun Chang | en |
| dc.contributor.author | 陳政諺 | zh_TW |
| dc.contributor.author | Jheng-Yan Chen | en |
| dc.date.accessioned | 2023-09-22T16:59:04Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Acharya, K., Pal, A. K., Gulati, A., Kumar, S., Singh, A. K., and Ahuja, P. S. 2013. Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol. 54:609–622.
Aerts, A. M., François, I. E. J. A., Meert, E. M. K., Li, Q. T., Cammue, B. P. A., and Thevissen, K. 2007. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol. 13:243–247. Akhtar, S. S., Mekureyaw, M. F., Pandey, C., and Roitsch, T. 2020. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci. 10:1777. Ali, G. S., Norman, D., and El-Sayed, A. S. 2015. Soluble and volatile metabolites of plant growth-promoting rhizobacteria (PGPRs): role and practical applications in inhibiting pathogens and activating induced systemic resistance (ISR). Adv. Bot. Res. 75:241–284. Ali, M., Li, Q.-H., Zou, T., Wei, A.-M., Gombojab, G., Lu, G., et al. 2020. Chitinase gene positively regulates hypersensitive and defense responses of pepper to Colletotrichum acutatum Int. J. Mol. Sci. 21:6624. Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H., and Winther, O. 2017. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 33:3387–3395. Altpeter, F., Varshney, A., Abderhalden, O., Douchkov, D., Sautter, C., Kumlehn, J., et al. 2005. Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol. 57:271–283. Arıkan, Ş., Eşitken, A., İpek, M., Aras, S., Şahin, M., Pırlak, L., Dönmez, M. F., Turan, M. 2018. Effect of plant growth promoting rhizobacteria on Fe acquisition in peach (Prunus Persica L) under calcareous soil conditions. J. Plant Nutr. 41:2141–2150. Aronson, N. N., Halloran, B. A., Alexyev, M. F., Amable, L., Madura, J. D., Pasupulati, L., Worth, C., and van Roey, P. 2003. Family 18 chitinase-oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A. Biochem. J. 376:87–95. Asao, H., Nishizawa, Y., Arai, S., Sato, T., Hirai, M., Yoshida, K., et al. 1997. Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol. J. 14:145–149. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., and Smith, D. L. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9:1473. Bailey, T. L., and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2:28–36. Balmer, D., Planchamp, C., and Mauch-Mani, B. 2013. On the move: induced resistance in monocots. J. Exp. Bot. 64:1249–1261. Bantignies, B., Séguin, J., Muzac, I., Dédaldéchamp, F., Gulick, P., and Ibrahim, R. 2000. Direct evidence for ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Mol Biol. 42:871–881. Bartholomew, E. S., Black, K., Feng, Z., Liu, W., Shan, N., Zhang, X., Wu, L., Bailey, L., Zhu, N., Qi, C., Ren, H., and Liu, X. 2019. Comprehensive analysis of the chitinase gene family in cucumber (Cucumis sativus L.): From gene identification and evolution to expression in response to Fusarium oxysporum. Int. J. Mol. Sci. 20:5309. Bartholomew, E. S., Xu, S., Zhang, Y., Yin, S., Feng, Z., Chen, S., Sun, L., Yang, S., Wang, Y., Liu, P., Ren, H., and Liu, X. 2022. A chitinase CsChi23 promoter polymorphism underlies cucumber resistance against Fusarium oxysporum f. sp. cucumerinum. New Phytol. 236:1471–1486. Benhamou, N., Broglie, K., Chet, I., and Broglie, R. 1993. Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. Plant J. 4:295–305. Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–486. Bharucha, U., Patel, K., and Trivedi, U. B. 2013. Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res. 2:215–221. Bhat, M. A., Kumar, V., Bhat, M. A., Wani, I. A., Dar, F. L., Farooq, I., Bhatti F., Koser, R., Rahman, S., and Jan, A. T. 2020. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front. Microbiol. 11:1958. Bhattacharyya, P. N., and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327–1350. Blättel, V., Larisika, M., Pfeiffer, P., Nowak, C., Eich, A., Eckelt, J., and König, H. 2011. β-1,3-glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification. Appl. Environ. Microbiol. 77:983–990. Blee, K. A., Jupe, S. C., Richard, G., Zimmerlin, A., Davies, D. R., and Bolwell, G. P. 2001. Molecular identification and expression of the peroxidase responsible for the oxidative burst in French bean (Phaseolus vulgaris L.) and related members of the gene family. Plant Mol Biol. 47:607–620. Blouin, M. 2018. Chemical communication: An evidence for co-evolution between plants and soil organisms. Appl. Soil Ecol. 123:409–415. Bordoloi, K. S., Krishnatreya, D. B., Baruah, P. M., Borah, A. K., Mondal, T. K., and Agarwala, N. 2021. Genome-wide identification and expression profiling of chitinase genes in tea (Camellia sinensis (L.) O. Kuntze) under biotic stress conditions. Physiol Mol Biol Plants. 27:369–385. Boutrot, F., Chantret, N., and Gautier, M. F. 2008. Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genom. 9:86. Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. 2016. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 34:525–527. Breen, S., Williams, S. J., Outram, M., Kobe, B., and Solomon, P. S. 2017. Emerging insights into the functions of pathogenesis-related protein 1. Trends Plant Sci. 22:871–879. Breiteneder, H., Pettenburger, K., Bito, A., Valenta, R., Kraft, D., Rumpold, H., Scheiner, O., and Breitenbach, M. 1989. The gene coding for the major birch pollen allergen Betv1, is highly homologous to a pea disease resistance response gene. EMBO J. 8:1935–1938. Brogue, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science. 254:1194–1197. Browne, P., Barret, M., Morrissey, J. P., and O’Gara, F. 2013. Molecular-based strategies to exploit the inorganic phosphate-solubilization ability of Pseudomonas in sustainable agriculture. In Molecular Microbial Ecology of the Rhizosphere, John Wiley and Sons, Ltd, p. 615–628. Brunner, F., Stintzi, A., Fritig, B., and Legrand, M. 1998. Substrate specificities of tobacco chitinases. Plant J. 14:225–234. Bufe, A., Spangfort, M. D., Kahlert, H., Schlaak, M., and Becker, W. M. 1996. The major birch pollen allergen, Bet v 1, shows ribonuclease activity. Planta. 199:413–415. Carvalho, A. de O., and Gomes, V. M. 2009. Plant defensins--prospects for the biological functions and biotechnological properties. Peptides. 30:1007–1020. Chalavi, V., Tabaeizadeh, Z., and Thibodeau, P. 2003. Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. J. Am. Soc. Hortic. Sci. 128:747–753. Chan, Y. L., Prasad, V., Sanjaya, Chen, K. H., Liu, P. C., Chan, M. T., and Cheng, C. p. 2005. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta. 221:386–393. Chang, H. X., Noel, Z. A., and Chilvers, M. I. 2021. A β-lactamase gene of Fusarium oxysporum alters the rhizosphere microbiota of soybean. Plant J. 106:1588–1604. Chen, J., Piao, Y., Liu, Y., Li, X., and Piao, Z. 2018a. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci. 270:257–267. Chen, L., Cai, Y., Liu, X., Guo, C., Sun, S., Wu, C., Jiang, B., Han, T., and Hou, W. 2018b. Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation. Crop J. 6:162–171. Chen, S., and Schopfer, P. 1999. Hydroxyl-radical production in physiological reactions. European J. Mol. Biol. Biochem. 260:726–735. Cheng, Y., Wang, X., Cao, L., Ji, J., Liu, T., and Duan, K. 2021. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods. 17:73. Chopra, R., and Saini, R. 2014. Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease. Appl. Biochem. Biotechnol. 174:2791–2800. Christensen, A. B., Cho, B. H., Næsby, M., Gregersen, P. L., Brandt, J., Madriz-Ordeñana, K., Collinge, D. B., and Thordal-Christensen, H. 2002. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol. Plant Pathol. 3:135–144. Conrath, U., Thulke, O., Katz, V., Schwindling, S., and Kohler, A. 2001. Priming as a Mechanism in Induced Systemic Resistance of Plants. Eur. J. Plant Pathol. 107:113–119. Cornelissen, BJC., and Melchers, L. S. 1993. Strategies for control of fungal diseases with transgenic plants. Plant Physiol. 101:709–712. Costa, J. M., and Loper, J. E. 1994. Characterization of siderophore production by the biological control agent Enterobacter cloacae. Mol. Plant Microbe Interact. 7(4):440-448. Dana, M. de las M., Pintor-Toro, J. A., and Cubero, B. 2006. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol. 142:722–730. Das, D. K., and Rahman, A. 2018. Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Am. J. Plant Sci. 9:2256–2275. Datta, K., Tu, J., Oliva, N., Ona, I., Velazhahan, R., Mew, T. W., Muthukrishnan, S., and Datta, S. K. 2001. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci. 160:405–414. Daulagala, P. W. H. K. P., and Allan, E. J. 2003. L-form bacteria of Pseudomonas syringae pv. phaseolicola induce chitinases and enhance resistance to Botrytis cinerea infection in Chinese cabbage. Physiol Mol Plant Pathol. 62:253–263. De Vleesschauwer, D., Chernin, L., and Höfte, M. M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 9:9. De Vleesschauwer, D., Cornelis, P., and Höfte, M. 2006. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Interact. 19:1406–1419. Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., and Simmonds, D. H. 2001. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol. Mol. Plant Pathol. 59:297–307. Dong, X., Ji, R., Guo, X., Foster, S. J., Chen, H., Dong, C., Liu, Y., Hu, Q., and Liu, S. 2008. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta. 228:331–340. Dong, X., Zhao, Y., Ran, X., Guo, L., and Zhao, D. G. 2017. Overexpression of a new chitinase gene EuCHIT2 enhances resistance to Erysiphe cichoracearum DC. in Tobacco Plants. Int J Mol Sci. 18:2361. Dowd, P. F., Naumann, T. A., Price, N. P. J., and Johnson, E. T. 2018. Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistance. Agri. Gene. 7:15–22. Doxey, A. C., Yaish, M. W. F., Moffatt, B. A., Griffith, M., and McConkey, B. J. 2007. Functional divergence in the Arabidopsis beta-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol. 24:1045–1055. Durechova, D., Jopcik, M., Rajninec, M., Moravcikova, J., and Libantova, J. 2019. Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their Antifungal potential. Mol. Biotechnol. 61:916–928. Easlon, H. M., and Bloom, A. J. 2014. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2:1400033. Eissa, H. F., Hassanien, S. E., Ramadan, A. M., El-Shamy, M. M., Saleh, O. M., Shokry, A. M., Abdelsattar, M., Morsy, Y. B., El-Maghraby, M. E., Alameldin, H. F., Hassan, S. M., Osman, G. H., Mahfouz, H. T., El-Karim, G. A. G., Madkour, M. A., and Bahieldin, A. 2017. Developing transgenic wheat to encounter rusts and powdery mildew by overexpressing barley chi26 gene for fungal resistance. Plant Methods. 13:41. Esmail, S. M., Aboulila, A. A., and El-Moneim, D. A. 2020. Variation in several pathogenesis - Related (PR) protein genes in wheat (Triticum aestivum) involved in defense against Puccinia striiformis f. sp. tritici. Physiol. Mol. Plant Pathol. 112:101545. Espinosa-Urgel, M., Kolter, R., and Ramos, J. L. 2002. Root colonization by Pseudomonas putida: love at first sight. Microbiology. 148:341–343. Etesami, H., and Adl, S. M. 2020. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Phyto-Microbiome in Stress Regulation, Environmental and Microbial Biotechnology, eds. Manoj Kumar, Vivek Kumar, and Ram Prasad. Singapore: Springer, p. 147–203. Fatima, S., and Anjum, T. 2017a. Identification of a potential ISR determinant from Pseudomonas aeruginosa PM12 against Fusarium wilt in tomato. Front. Plant Sci. 8:848. Fatima, S., and Anjum, T. 2017b. Potential of rhizospheric Pseudomonas strains to manage Fusarium wilt of tomato. J. Agric. Res. 55(3):525-536. Ferreira, M. J., Silva, H., and Cunha, A. 2019. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosphere. 29:409–420. Finn, R. D., Clements, J., and Eddy, S. R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29–W37. Freitas, C. D. T., Freitas, D. C., Cruz, W. T., Porfírio, C. T. M. N., Silva, M. Z. R., Oliveira, J. S., Carvalho, C. P. S., and Ramos, M. V. 2017. Identification and characterization of two germin-like proteins with oxalate oxidase activity from Calotropis procera latex. Int. J. Biol. Macromol. 105:1051–1061. Funkhouser, J. D., and Aronson, N. N. 2007. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol. Biol. 7:96. Gao, Y., Jia, S., Wang, C., Wang, F., Wang, F., and Zhao, K. 2016. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element. J. Exp. Bot. 67:4647–4658. García-Cristobal, J., García-Villaraco, A., Ramos, B., Gutierrez-Mañero, J., and Lucas, J. A. 2015. Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge. J. Plant Physiol. 188:72–79. Gasteiger, E., Hoogland C., Gattiker A., Duvaud S., Wilkins M. R., Appel R. D., and Bairoch A. 2005. Protein identification and analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook, eds. Walker, John M. Totowa, NJ: Humana Press US, p. 571–607. Ghazy, N., and El-Nahrawy, S. 2021. Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch. Microbiol. 203:1195–1209. Girhepuje, P. V., and Shinde, G. B. 2011. Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tissue Organ Cult. 105:243–251. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012:1-15. Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell. 8:629–643. Grover, A. 2012. Plant Chitinases: Genetic Diversity and Physiological Roles. Crit. Rev. Plant Sci. 31:57–73. Gu, Z., Eils, R., and Schlesner, M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32:2847–2849. Haggag, W. M., and Timmusk, S. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol. 104:961–969. Hao, G., Stover, E., and Gupta, G. 2016. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Front. Plant Sci. 7:1078. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., and Koshiba, T. 2004. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiol. 45:550–559. Haxim, Y., Kahar, G., Zhang, X., Si, Y., Waheed, A., Liu, X., Wen X., Li X. and Zhang D. 2022. Genome-wide characterization of the chitinase gene family in wild apple (Malus sieversii) and domesticated apple (Malus domestica) reveals its role in resistance to Valsa mali. Front. Plant Sci. 13:1007936. He, T., Fan, J., Jiao, G., Liu, Y., Zhang, Q., Luo, N., et al. 2023. Bioinformatics and expression analysis of the chitinase genes in strawberry (Fragaria vesca) and functional study of FvChi-14. Plants. 12:1543. Heitz, T., Geoffroy, P., Fritig, B., and Legrand, M. 1999. The PR-6 family: Proteinase inhibitors in plant-microbe and plant-insect interactions. In Pathogenesis-related proteins in plants, eds. Swapan K. Datta and Subbaratnam Muthukrishnan. BCT: CRC Press, p. 131-155. Henrissat, B., Coutinho, P. M., and Davies, G. J. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol. 47:55–72. Hider, R. C., and Kong, X. 2010. Chemistry and biology of siderophores. Nat. Prod. Rep. 27:637. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H. 2001. A large family of class III plant peroxidases. Plant Cell Physiol. 42:462–468. Hu, H., Wang, C., Li, X., Tang, Y., Wang, Y., Chen, S., and Yan, S. 2018. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. Pest Manag. Sci. 74:2793–2805. Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., and Lu, G. 2003. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133:170–181. Huang, L. F., Lin, K. H., He, S. L., Chen, J. L., Jiang, J. Z., Chen, B. H., Hou, Y. S., Chen, R. S. Hong, C. Y., and Ho, S. L. 2016. Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene, OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One. 11:e0156414. Huang, X., Wang, J., Du, Z., Zhang, C., Li, L., and Xu, Z. 2013. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24. Transgenic Res. 22:939–947. Ignacimuthu, S., and Ceasar, S. A. 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. 37:135–147. Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J., and Ali, G. M. 2012. Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol. 50:129–136. Iwai, T., Kaku, H., Honkura, R., Nakamura, S., Ochiai, H., Sasaki, T., and Ohashi, Y. 2002. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol. Plant Microbe. Interact. 15:515–521. Jabeen, N., Chaudhary, Z., Gulfraz, M., Rashid, H., and Mirza, B. 2015. Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to Fusarium wilt and early blight. Plant Pathol. J. 31:252–258. Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Maas, C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8:97–109. Jetiyanon, K., Fowler, W. D., and Kloepper, J. W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis. 87:1390–1394. Jha, S., Tank, H. G., Prasad, B. D., and Chattoo, B. B. 2009. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res. 18:59–69. Jiao, R., Ahmed, A., He, P., Munir, S., Wu, Y., Wang, J., He, P., Wang, G., Yang, H., Zhao, J., Lu, C., Cai, Y., and He, Y. 2023. Bacillus amyloliquefaciens induces resistance in tobacco against powdery mildew pathogen Erysiphe cichoracearum. J. Plant Growth Regul. 1-16. Jochum, M. D., McWilliams, K. L., Borrego, E. J., Kolomiets, M. V., Niu, G., Pierson, E. A., and Jo, Y. K. 2019. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front. Microbiol. 10:2016. Johrde, A., and Schweizer, P. 2008. A class III peroxidase specifically expressed in pathogen-attacked barley epidermis contributes to basal resistance. Mol. Plant Pathol. 9:687–696. Joo, G. J., Kim, Y.M., Lee, I. J., Song, K. S., and Rhee, I. K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26:487–491. Joshi, B. N., Sainani, M. N., Bastawade, K. B., Deshpande, V. V., Gupta, V. S., and Ranjekar, P. K. 1999. Pearl millet cysteine protease inhibitor. Evidence for the presence of two distinct sites responsible for anti-fungal and anti-feedent activities. Eur. J. Biochem. 265:556–563. Kachroo, A., and Robin, G. P. 2013. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16:527–533. Kader, J. C. 1996. Lipid-transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:627–654. Kang, B. R., Park, J. S., and Jung, W. J. 2020. Antifungal evaluation of fengycin isoforms isolated from Bacillus amyloliquefaciens PPL against Fusarium oxysporum f. sp. lycopersici. Microb. Pathog. 149:104509. Kang, J. N., Park, M. Y., Kim, W. N., Kang, H. G., Sun, H. J., Yang, D. H., Ko, S. M., and Lee, H. Y. 2017. Resistance of transgenic zoysiagrass overexpressing the zoysiagrass class II chitinase gene Zjchi2 against Rhizoctonia solani AG2-2 (IV). Plant Biotechnol. Rep. 11:229–238. Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M., and Lee, I. J. 2014. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol. 24:106–112. Katoh, K., Rozewicki, J., and Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics. 20:1160–1166. Kawase, T., Saito, A., Sato, T., Kanai, R., Fujii, T., Nikaidou, N., Miyashita, K., and Watanabe, T. 2004. Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Appl. Environ. Microbiol. 70:1135–1144. Kezuka, Y., Ohishi, M., Itoh, Y., Watanabe, J., Mitsutomi, M., Watanabe, T., and Nonaka, T. 2006. Structural studies of a two-domain chitinase from Streptomyces griseus HUT6037. J. Mol. Biol. 358:472–484. Khan, A., Nasir, I. A., Tabassum, B., Aaliya, K., Tariq, M., and Rao, A. Q. 2017. Expression studies of chitinase gene in transgenic potato against Alternaria solani. Plant Cell Tissue Organ Cult. 128:563–576. Kiba, A., Nishihara, M., Nakatsuka, T., and Yamamura, S. 2007. Pathogenesis-related protein 1 homologue is an antifungal protein in Wasabia japonica leaves and confers resistance to Botrytis cinerea in transgenic tobacco. Plant Biotechnol. 24:247–253. Kim, D. S., Kim, N. H., and Hwang, B. K. 2015. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses. J. Exp. Bot. 66:1987–1999. Kim, J. S., Lee, J., Lee, C. H., Woo, S. Y., Kang, H., Seo, S. G., and Kim, S. H. 2015. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J. 31:195–201. Kim, S. A., and Guerinot, M. L. 2007. Mining iron: Iron uptake and transport in plants. FEBS Lett. 581:2273–2280. Kishimoto, K., Nishizawa, Y., Tabei, Y., Hibi, T., Nakajima, M., and Akutsu, K. 2002. Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci. 162:655–662. Kishimoto, K., Nishizawa, Y., Tabei, Y., Nakajima, M., Hibi, T., and Akutsu, K. 2004. Transgenic cucumber expressing an endogenous class III chitinase gene has reduced symptoms from Botrytis cinerea. J. Gen. Plant Pathol. 70:314–320. Kishore, N., Pindi, P. K., and Ram Reddy, S. 2015. Phosphate-solubilizing microorganisms: A critical review. In Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement, eds. Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, and K.V. Krishnamurthy. New Delhi: Springer India, p. 307–333. Kloepper, J. W., and Schroth, M. N. 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology. 71:642-644. Kobayashi, T., and Nishizawa, N. K. 2012. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63:131–152. Kovács, G., Sági, L., Jacon, G., Arinaitwe, G., Busogoro, J.-P., Thiry, E., Strosse, H., Swenne, R., and Remy, S. 2013. Expression of a rice chitinase gene in transgenic banana (“Gros Michel”, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 22:117–130. Kragh, K. N., Hutchison, J. B., Melaugh, G., Rodesney, C., Roberts, A. E. L., Irie, Y., Jensen, P. Ø., Diggle, S. P., Allen, R. J., Gordon, V., and Bjarnsholt, T. 2016. Role of multicellular aggregates in biofilm formation. MBio. 7:e00237-16. Kumar, P., Thakur, S., Dhingra, G. K., Singh, A., Pal, M. K., Harshvardhan, K., Dubey, R. C., and Maheshwari, D. K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal. Agric. Biotechnol. 15:264–269. Łabaj, P. P., Leparc, G. G., Bardet, A. F., Kreil, G., and Kreil, D. P. 2010. Single amino acid repeats in signal peptides. FEBS J. 277:3147–3157. Laller, R., Khosla, P. K., Negi, N., Avinash, H., Kusum, Thakur, N., Kashyap, S., Shukla, S. K., and Hussain I. 2023. Bacterial volatiles as PGPRs: Inducing plant defense mechanisms during stress periods. S. Afr. J. Bot. 159:131–139. Lane, B. G. 2002. Oxalate, germins, and higher-plant pathogens. IUBMB Life. 53:67–75. Laslo, É., György, É., Mara, G., Tamás, É., Ábrahám, B., and Lányi, S. 2012. Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot. 40:43–48. Lee, K.-E., Radhakrishnan, R., Kang, S. M., You, Y. H., Joo, G. J., Lee, I. J., Ko, J. H., Kim, J. H. 2015. Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion. J. Microbiol. Biotechnol. 25:1467–1475. Letunic, I., and Bork, P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49:W293–W296. Li, P., Pei, Y., Sang, X., Ling, Y., Yang, Z., and He, G. 2009. Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur. J. Plant Pathol. 125:533–543. Li, S., Hai, J., Wang, Z., Deng, J., Liang, T., Su, L., and Liu, D. 2021. Lilium regale Wilson WRKY2 regulates chitinase gene expression during the response to the root rot pathogen Fusarium oxysporum. Front. Plant Sci. 12:741463. Lindström, K., and Mousavi, S. A. 2020. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol. 13:1314–1335. Liu, B., Xue, X., Cui, S., Zhang, X., Han, Q., Zhu, L., Liang, X., Wang, X., Huang, L., Chen, X., and Kang, Z. 2010. Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol. Biol. Rep. 37:1045–1052. Liu, D., He, X., Li, W., Chen, C., and Ge, F. 2012. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tissue Organ Cult. 111:29–39. Liu, F., Xing, S., Ma, H., Du, Z., and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97:9155–9164. Liu, M., Gong, Y., Sun, H., Zhang, J., Zhang, L., Sun, J., Han, Y., Huang, J., Wu, Q., Zhang, C., and Li, Z. 2020. Characterization of a novel chitinase from sweet potato and its fungicidal effect against Ceratocystis fimbriata. J. Agric. Food Chem. 68:7591–7600. Livingstone, D. M., Hampton, J. L., Phipps, P. M., and Grabau, E. A. 2005. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase Gene. Plant Physiol. 137:1354–1362. Long, L., Yang, W.-W., Liao, P., Guo, Y.-W., Kumar, A., and Gao, W. 2019. Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Sci. 281:72–81. Lucas-Bautista, J. A., Ventura-Aguilar, R. I., Bautista-Baños, S., Corona-Rangel, M. L., and Guillén-Sánchez, D. 2020. Evaluation of the chitinase activity in papaya fruit at different phenological stages as a possible biomarker for the detection of Colletotrichum gloeosporioides infection. Curr. Plant Biol. 23:100165. Luo, X., Tian, T., Feng, L., Yang, X., Li, L., Tan, X., Wu, W., Li, Z., Treves, H., Serneels, F., Ng, I., Tanaka, K., and Ren, M. 2023. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. J. Adv. Res. 43:13–26. Lv, C., Gu, T., Ma, R., Yao, W., Huang, Y., Gu, J., and Zhao, G. 2021. Biochemical characterization of a GH19 chitinase from Streptomyces alfalfae and its applications in crystalline chitin conversion and biocontrol. Int. J. Biol. Macromol. 167:193–201. Lv, P., Zhang, C., Xie, P., Yang, X., El-Sheikh, M. A., Hefft, D. I., Ahmad, P., Zhao, T., and Bhat, J. A. 2022. Genome-wide identification and expression analyses of the chitinase gene family in response to white mold and drought stress in soybean (Glycine max). Life (Basel). 12:1340. Ma, X. L., Milne, R. I., Zhou, H. X., Fang, J. Y., and Zha, H. G. 2017. Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. Plant Biol. 19:749–759. Maheshwari, D. K., Dheeman, S., and Agarwal, M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity, ed. Dinesh K. Maheshwari. Cham: Springer International Publishing, p. 159–182. Manwar, A. V., Khandelwal, S. R., Chaudhari, B. L., Meyer, J. M., and Chincholkar, S. B. 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl. Biochem. Biotechnol. 118:243–251. Marchant, R., Davey, M. R., Lucas, J. A., Lamb, C. J., Dixon, R. A., and Power, J. B. 1998. Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol. Breed. 4:187–194. Marks, R. A., Hotaling, S., Frandsen, P. B., and VanBuren, R. 2021. Representation and participation across 20 years of plant genome sequencing. Nat. Plants. 7:1571–1578. Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10–12. Masalha, J., Kosegarten, H., Elmaci, Ö., and Mengel, K. 2000. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils. 30:433–439. Mauch-Mani, B., Baccelli, I., Luna, E., and Flors, V. 2017. Defense priming: An adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485–512. Maximova, S. N., Marelli, J. P., Young, A., Pishak, S., Verica, J. A., and Guiltinan, M. J. 2006. Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta. 224:740–749. Mellidou, I., Ainalidou, A., Papadopoulou, A., Leontidou, K., Genitsaris, S., Karagiannis, E., Van de Poel, B., and Karamanoli, K. 2021. Comparative transcriptomics and metabolomics reveal an intricate priming mechanism involved in PGPR-mediated salt tolerance in tomato. Front. Plant Sci. 12:713984. Mir, Z. A., Ali, S., Shivaraj, S. M., Bhat, J. A., Singh, A., Yadav, P., Rawat, S., Paplao, P., Grover, A. 2020. Genome-wide identification and characterization of chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics. 112:749–763. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. 2022. ColabFold: making protein folding accessible to all. Nat. Methods. 19:679–682. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49:D412–D419. Mizumoto, S., Hirai, M., and Shoda, M. 2007. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl. Microbiol. Biotechnol. 75:1267–1274. Moura, R. D., de Castro, L. A. M., Culik, M. P., Fernandes, A. A. R., Fernandes, P. M. B., and Ventura, J. A. 2020. Culture medium for improved production of conidia for identification and systematic studies of Fusarium pathogens. J. Microbiol. Methods. 173:105915. Muramoto, N., Tanaka, T., Shimamura, T., Mitsukawa, N., Hori, E., Koda, K., Otani, M., Hirai, M., Nakamura, K., and Imaeda, T. 2012. Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep. 31:987–997. Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–274. Nirala, N. K., Das, D. K., Srivastava, P. S., Sopory, S. K., and Upadhyaya, K. C. 2010. Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis. 49(4):181-187. Nishizawa, Y., Nishio, Z., Nakazono, K., Soma, M., Nakajima, E., Ugaki, M., and Hibi, T. 1999. Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor. Appl. Genet. 99:383–390. Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., and Nishizawa, N. K. 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 286:5446–5454. Núñez de Cáceres González, F. F., Davey, M. R., Cancho Sanchez, E., and Wilson, Z. A. 2015. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH10 chitinase gene. Plant Cell Rep. 34:1201–1209. Okushima, Y., Koizumi, N., Kusano, T., and Sano, H. 2000. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol. Biol. 42:479–488. Oldroyd, G. E. D., Murray, J. D., Poole, P. S., and Downie, J. A. 2011. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45:119–144. Ongena, M., and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115–125. Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. 1995. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 368:257–262. Pak, J. H., Chung, E. S., Shin, S. H., Jeon, E. H., Kim, M. J., Lee, H. Y., Jeung, J. U., Hyung, A. I., Lee, J. H., and Chung, Y. S. 2009. Enhanced fungal resistance in Arabidopsis expressing wild rice PR-3 (OgChitIVa) encoding chitinase class IV. Plant Biotechnol. Rep. 3:147–155. Pappinen, A., Degefu, Y., Syrjälä, L., Keinonen, K., and von Weissenberg, K. 2002. Transgenic silver birch (Betula pendula) expressing sugarbeet chitinase 4 shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep. 20:1046–1051. Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C., and Paek, K. H. 2004. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186–198. Park, K. S., Cheong, J. J., Lee, S. J., Suh, M. C., and Choi, D. 2000. A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection. Biochim. Biophys. Acta. 1492(2-3):509–512. Pasonen, H. L., Seppänen, S. K., Degefu, Y., Rytkönen, A., von Weissenberg, K., and Pappinen, A. 2004. Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor. Appl. Genet. 109:562–570. Passardi, F., Cosio, C., Penel, C., and Dunand, C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24:255–265. Passarinho, P., and de Vries, S.C. 2002. Arabidopsis chitinase: A genomic survey. In The Arabidopsis Book, eds. C. R. Somerville and E. M. Meyerowitz. Rockville, MD: American Society of Plant Biologists. Patil, R. S., Ghormade, V., and Deshpande, M. V. 2000. Chitinolytic enzymes: an exploration. Enzyme and Microb. Technol. 26:473–483. Pelegrini, P. B., and Franco, O. L. 2005. Plant γ-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. Int. J. Biochem. Cell Biol. 37:2239–2253. Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., and Vorgias, C. E. 1994. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure. 2:1169–1180. Petre, B., Major, I., Rouhier, N., and Duplessis, S. 2011. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC Plant Biol. 11:33. Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. of Phytopathol. 52:347–375. Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., and Crecchio, C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils. 51:403–415. Pimentel, H., Bray, N. L., Puente, S., Melsted, P., and Pachter, L. 2017. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods. 14:687–690. Popovic, M. M., Bulajic, A., Ristic, D., Krstic, B., Jankov, R. M., and Gavrovic-Jankulovic, M. 2012. In vitro and in vivo antifungal properties of cysteine proteinase inhibitor from green kiwifruit. J. Sci. Food Agric. 92:3072–3078. Prasad, K., Bhatnagar-Mathur, P., Waliyar, F., and Sharma, K. K. 2013. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J. Plant Biochem. Biotechnol. 22:222–233. Pršić, J., and Ongena, M. 2020. Elicitors of plant immunity triggered by beneficial bacteria. Front. Plant Sci. 11:594530. Pundir, C. S. 1991. Purification and properties of oxalate oxidase from sorghum leaves. Phytochem. 30:1065–1067. Radjacommare, R., Ramanathan, A., Kandan, A., Harish, S., Thambidurai, G., Sible, G. V., Ragupathi, N., and Samiyappan, R. 2005. PGPR mediates induction of pathogenesis-related (PR) proteins against the infection of blast pathogen in resistant and susceptible ragi [Eleusine coracana (L.) Gaertner] cultivars. Plant Soil. 266:165–176. Rajesh, T., Maruthasalam, S., Kalpana, K., Poovannan, K., Kumar, K. K., Kokiladevi, E., Sudhakar, D., Samiyappan, R., and Balasurbramanian, P. 2016. Stability of sheath blight resistance in transgenic ASD16 rice lines expressing a rice chi11 gene encoding chitinase. Biol Plant. 60:749–756. Rajninec, M., Jopcik, M., Danchenko, M., and Libantova, J. 2020. Biochemical and antifungal characteristics of recombinant class I chitinase from Drosera rotundifolia. Int. J. Biol. Macromol. 161:854–863. Ramezani, M., Ramezani, F., Rahmani, F., and Dehestani, A. 2018. Exogenous potassium phosphite application improved PR-protein expression and associated physio-biochemical events in cucumber challenged by Pseudoperonospora cubensis. Sci. Hortic. 234:335–343. Rawat, P., Das, S., Shankhdhar, D., and Shankhdhar, S. C. 2021. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 21:49–68. Reyes-ramírez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M., and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69:M131–M134. Richa, K., Tiwari, I. M., Devanna, B. N., Botella, J. R., Sharma, V., and Sharma, T. R. 2017. Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front. Plant Sci. 8:596. Richa, K., Tiwari, I. M., Kumari, M., Devanna, B. N., Sonah, H., Kumari, A., Nagar, R., Sharma, V., Botella, J. R., and Sharma, T. 2016. Functional characterization of novel chitinase genes present in the sheath blight resistance QTL: qSBR11-1 in rice line Tetep. Front. Plant Sci. 7:244. Rohini, V. K., and Sankara Rao, K. 2001. Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci. 160:889–898. Rollins, J. A. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant Microbe. Interact. 16:785–795. Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J., Alcántara, E., Angulo, M., and Pérez-Vicente, R. 2019. Induced systemic resistance (ISR) and Fe deficiency responses in dicot Plants. Front Plant Sci. 10:287. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and Pérez-García, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe. Interact. 20:430–440. Rushanaedy, I., Jones, T. C., Dudley, N. S., Liao, R. J. F., Agbayani, R., and Borthakur, D. 2012. Chitinase is a potential molecular biomarker for detecting resistance to Fusarium oxysporum in Acacia koa. Trop. Plant Biol. 5:244–252. Ryan, C. A. 1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28:425–449. Salminen, T. A., Blomqvist, K., and Edqvist, J. 2016. Lipid transfer proteins: classification, nomenclature, structure, and function. Planta. 244:971–997. Salwan, R., Sharma, A., Kaur, R., Sharma, R., and Sharma, V. 2022. The riddles of Trichoderma induced plant immunity. Biol. Control. 174:105037. Salzer, P., Feddermann, N., Wiemken, A., Boller, T., and Staehelin, C. 2004. Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108-1: a comparison between symbiosis-specific class V and defence-related class IV chitinases. Planta. 219:626–638. Santos, P., Fortunato, A., Ribeiro, A., and Pawlowski, K. 2008. Chitinases in root nodules. Plant Biotechnol (Tokyo). 25:299–307. Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. D. C., and Glick, B. R. 2021. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology (Basel). 10:475. Schlumbaum, A., Mauch, F., Vögeli, U., and Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature. 324:365–367. Schwechheimer, C. 2011. Gibberellin signaling in plants - the extended version. Front. Plant Sci. 2:107. Selitrennikoff, C. P. 2001. Antifungal proteins. Appl. Environ. Microbiol. 67:2883–2894. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., and Gobi, T. A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2:587. Shi, Y., Zhang, Y., and Shih, D. S. 2006. Cloning and expression analysis of two β-1,3-glucanase genes from Strawberry. J. of Plant Physiol. 163:956–967. Shin, S., Mackintosh, C. A., Lewis, J., Heinen, S. J., Radmer, L., Dill-Macky, R., Baldridge, G. D., Zeyen, R. J., and Muehlbauer, G. J. 2008. Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J. Exp. Bot. 59:2371–2378. Siddiqui, I. A., and Shaukat, S. S. 2002. Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. J. Phytopathol. 150:469–473. Soares-Costa, A., Beltramini, L. M., Thiemann, O. H., and Henrique-Silva, F. 2002. A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem. Biophys. Res. Commun. 296:1194–1199. Stotz, H. U., Thomson, J., and Wang, Y. 2009. Plant defensins. Plant Signal. Behav. 4:1010–1012. Su, Y., Wang, Z., Liu, F., Li, Z., Peng, Q., Guo, J., Xu, L., and Que, Y. 2016. Isolation and characterization of ScGluD2, a new sugarcane beta-1,3-Glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 Stresses. Front. Plant Sci. 7:1348. Sumaira Farrakh, M. W. 2018. Pathogenesis-related protein genes involved in race-specific allstage resistance and non-race specific high-temperature adult-plant resistance to Puccinia striiformis f. sp. tritici in wheat. J. Integr. Agric. 17:2478–2491. Sun, J.-Y., Gaudet, D. A., Lu, Z.-X., Frick, M., Puchalski, B., and Laroche, A. 2008. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol. Plant Microbe Interact. 21:346–360. Sun, Y., Shang, L., Zhu, Q. H., Fan, L., and Guo, L. 2022. Twenty years of plant genome sequencing: achievements and challenges. Trends Plant Sci. 27:391–401. Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H., and Poysa, V. 1999. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep. 19:197–202. Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M. S., Shahid, N., and Aaliya, K. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121:102–117. Tabei, Y., Kitade, S., Nishizawa, Y., Kikuchi, N., Kayano, T., Hibi, T., and Akutsu, K. 1998. Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep. 17:159–164. Taira, T., Hayashi, H., Tajiri, Y., Onaga, S., Uechi, G., Iwasaki, H., Ohnuma, T., and Fukamizo, T. 2009. A plant class V chitinase from a cycad (Cycas revoluta): Biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiol. 19:1452–1461. Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., and Ishihara, M. 2002. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci Biotechnol Biochem. 66:970–977. Takahashi, W., Fujimori, M., Miura, Y., Komatsu, T., Nishizawa, Y., Hibi, T., and Takamizo T. 2005. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep. 23:811–818. Takatsu, Y., Nishizawa, Y., Hibi, T., and Akutsu, K. 1999. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hortic. 82:113–123. Tang, C. M., Chye, M. L., Ramalingam, S., Ouyang, S. W., Zhao, K. J., Ubhayasekera, W., and Mowbray, S. 2004. Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1. Plant Mol. Biol. 56:285–298. Tariq, M., Khan, A., Tabassum, B., Tougiq, N., Bhatti, M. U., Riaz, S., Nasir, I. A., and Hushain, T. 2018. Antifungal activity of chitinase II against Colletotrichum falcatum Went. causing red rot disease in transgenic sugarcane. Turk. J. Biol. 42:45–53. Thevissen, K., Terras, F. R., and Broekaert, W. F. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65:5451–5458. Thevissen, K., Warnecke, D. C., François, I. E. J. A., Leipelt, M., Heinz, E., Ott, C., Zähringer, U., Thomma, B. P. H. J., Ferket, K. K. A., and Cammue, B. P. A. 2004. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 279:3900–3905. Tohidfar, M., Mohammadi, M., and Ghareyazie, B. 2005. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tissue Organ Cult. 83:83–96. Tornero, P., Conejero, V., and Vera, P. 1997. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J. Biol. Chem. 272:14412–14419. Tran, H. T., Barnich, N., and Mizoguchi, E. 2011. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Histol. Histopathol. 26:1453–1464. Tsai, H. H., and Schmidt, W. 2017. Mobilization of iron by plant-borne coumarins. Trends Plant Sci. 22:538–548. Tsukanova, K. A., Сhеbоtаr, V. К., Meyer, J. J. M., and Bibikova, T. N. 2017. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot. 113:91–102. Vaghela, B., Vashi, R., Rajput, K., and Joshi, R. 2022. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme Microb. Technol. 159:110055. van der Wel, H., and Loeve, K. 1972. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J. Biochem. 31:221–225. van Loon, L. C., and Van Kammen, A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. ‘Samsun’ and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology. 40:199–211. van Loon, L. C., and Van strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85–97. van Loon, L. C., Rep, M., and Pieterse, C. M. J. 2006. Significance of inducible defense-related Proteins in Infected Plants. Annu. Rev. Phytopathol. 44:135–162. Vellicce, G. R., Ricci, J. C. D., Hernández, L., and Castagnaro, A. P. 2006. Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res. 15:57–68. Vierheilig, H., Alt, M., Lange, J., Gut-Rella, M., Wiemken, A., and Boller, T. 1995. Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl. Environ. Microbiol. 61:3031–3034. Visarada, K. B. R. S., Meena, K., Aruna, C., Srujana, S., Saikishore, N., and Seetharama, N. 2009. Transgenic breeding: Perspectives and prospects. Crop Sci. 49:1555–1563. Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., and Nayem, S. 2021. Systemic propagation of immunity in plants. New Phytol. 229:1234–1250. Wang, F., Yang, S., Wang, Y., Zhang, B., Zhang, F., Xue, H., Jiang, Q., and Ma, Y. 2021a. Overexpression of chitinase gene enhances resistance to Colletotrichum gloeosporioides and Alternaria alternata in apple (Malus×domestica). Sci. Hortic. 277:109779. Wang, H., Liu, R., You, P. M., Barbetti, M. J., and Chen, Y. 2021b. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms. 9(9):1988. Wang, Y., Liu, M., Wang, X., Zhong, L., Shi, G., Xu, Y., Li, R., Huang, Y., Ye, X., Li, Z., and Cui, Z. 2021c. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae. J. Plant Physiol. 265:153493. Wehner, G., Kopahnke, D., Richter, K., Kecke, S., Schikora, A., and Ordon, F. 2019. Priming is a suitable strategy to enhance resistance towards leaf rust in barley. Phytobiomes J. 3:46–51. Wei, Y., Zhang, Z., Andersen, C. H., Schmelzer, E., Gregersen, P. L., Collinge, D. B., Smedegaard-Petersen, V., and Thordal-Christensen, H. 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol. 36:101–112. Welinder, K. G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2:388–393. Wen, Z., Bai, J., Wang, L., Yao, L., Ahmad, B., Hanif, M., et al. 2020. Over expression of a chitinase 2 gene from chinese wild strawberry improves resistance to anthracnose disease in transgenic Arabidopsis thaliana. Plant Biotechnol. Rep. 14:725–736. Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B., and Albrectsen, B. R. 2019. Defence priming in Arabidopsis – a meta-analysis. Sci. Rep. 9:13309. Wijaya, R., Neumann, G. M., Condron, R., Hughes, A. B., and Polya, G. M. 2000. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci. 159:243–255. Xiao, Y. H., Li, X. B., Yang, X. Y., Luo, M., Hou, L., Guo, S. H., Luo, X. Y., and Pei, Y. 2007. Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci. Biotechnol. Biochem. 71:1211–1219. Xie, Y.-R., Chen, Z.-Y., Brown, R. L., and Bhatnagar, D. 2010. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays. J. Plant Physiol. 167:121–130. Xin, Y., Wang, D., Han, S., Li, S., Gong, N., Fan, Y., et al. 2021. Characterization of the chitinase gene family in mulberry (Morus notabilis) and MnChi18 involved in resistance to Botrytis cinerea. Genes (Basel). 13:98. Xu, J., Xu, X., Tian, L., Wang, G., Zhang, X., Wang, X., and Guo, W. 2016. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci. Rep. 6:29022. Yamamoto, S., Nakano, T., Suzuki, K., and Shinshi, H. 2004. Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim. Biophys. Acta. 1679:279–287. Yamamoto, T., Iketani, H., Ieki, H., Nishizawa, Y., Notsuka, K., Hibi, T., Hayashi, T., and Matsuta, N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19:639–646. Yang, J., Gan, Z., Lou, Z., Tao, N., Mi, Q., Liang, L., et al. 2010. Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiol. 156:3566–3574. Yang, J., Kloepper, J. W., and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1–4. Yu, G. Y., Sinclair, J. B., Hartman, G. L., and Bertagnolli, B. L. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955–963. Yu, Y. Y., Dou, G. X., Sun, X. X., Chen, L., Zheng, Y., Xiao, H. M., Wang, Y. P., Li, H. Y., Guo, J. H., and Jiang, C. H. 2021. Transcriptome and biochemical analysis jointly reveal the effects of Bacillus cereus AR156 on postharvest strawberry gray mold and fruit quality. Front. Plant Sci. 12:700446. Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., and Chua, N.-H. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1:641–646. Zhou, F., Zhang, Z., Gregersen, P. L., Mikkelsen, J. D., de Neergaard, E., Collinge, D. B., and Thordal-Christensen, H. 1998. Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol. 117:33–41. Zhu, X., Li, Z., Xu, H., Zhou, M., Du, L., and Zhang, Z. 2012. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Funct. Integr. Genomics. 12:481–488. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89995 | - |
| dc.description.abstract | 植物可辨識植物促生根際細菌 (plant growth-promoting rhizobacteria, PGPR) 釋出的激發子 (elicitor) 以預啟 (prime) 植物防禦反應相關基因,進而提升植物的抗病能力。在預啟反應所表現的蛋白中,病程相關蛋白 (pathogenesis-related protein, PR-protein) 之表現扮演了重要的角色。其中隸屬病原性相關蛋白PR-3、PR-4、PR-8及PR-11的幾丁質酶 (chitinase) 為一種廣泛存在於多種生物的糖苷水解酶 (glycoside hydrolase),可透過水解幾丁質之糖苷鍵,進而影響真菌細胞壁等由幾丁質所構成的組織。由於幾丁質酶提供良好抗病潛力,加上近年高通量定序技術的發展,目前已有數種植物以全基因體角度切入探討幾丁質酶相關基因。此外,結合植株受病原菌感染之轉錄體分析,亦可進一步研究受到土壤微生物預啟的幾丁質酶基因是否受到病原菌調控,並以基因轉殖技術驗證其功能性。大豆 (Glycine max) 作為重要經濟作物之一,目前鮮有研究對其基因體中的幾丁質酶基因數量進行預測,故本研究透過大豆全基因體分析找到37個幾丁質酶基因,並經由大豆接種Burkholderia. ambifaria及Fusarium oxysporum之轉錄體分析,發現了5個幾丁質酶基因會受二者影響而上調。結合來自22種植物中已受功能性驗證之幾丁質酶序列進行親緣樹分析後,本研究挑選3個大豆幾丁質酶基因 (GmChi01、GmChi02及GmChi16) 透過農桿菌介導的阿拉伯芥轉殖技術,獲得了三個大豆基因的過表達子代。相較於阿拉伯芥Col-0,過表達大豆幾丁質酶基因之阿拉伯芥在整體生長勢上並無顯著差異,然而以離葉接種及土壤接種F. oxysporum f.sp. rapae後,計算葉片黃化程度換算病害發生進程下之面積 (AUDPC) 及幼苗存活率,發現過表達GmChi02及GmChi16之阿拉伯芥葉片可展現較強之的抗病能力。雖然GmChi02與GmChi16皆具提升抗病能力,但僅有GmChi02受到B. ambifaria預啟,說明幾丁質酶基因可能受到不同PGPR影響。透過接種6種不同PGPR之轉錄體分析,發現9個幾丁質酶基因不受到所測試的6種PGPR影響,另有10個幾丁質酶基因受到至少一種PGPR影響而顯著上調。綜合上述,本研究以全基因體分析大豆幾丁質酶基因,並搭配轉錄體學及阿拉伯芥轉殖技術驗證大豆幾丁質酶之抗真菌能力,同時紀錄6種PGPR預啟大豆幾丁質酶基因表現能力具有差異性。 | zh_TW |
| dc.description.abstract | Plants recognize elicitors released by plant growth-promoting rhizobacteria (PGPR) to initiate pathogenic-related proteins (PR-proteins) responses in disease priming. PR-proteins such as PR-3, PR-4, PR8, and PR-11 are chitinases that hydrolyze the glycosidic bond of chitin, which is the main component of fungal cell wall. In advantage of high-throughput sequencing technologies, it becomes powerful to perform genome-wide characterization of chitinases in plant genomes. Together with transcriptomic analyses to find PR-protein genes under biotic stresses such as fungal infection, validating gene functions in resistance through heterogeneous transformation has been robust and approachable. Soybean (Glycine max) is one of the most important economic crops, but limited researches have focused on soybean chitinase genes in the genome or validated their functions in defense responses. In this study, we identified 37 chitinase genes in the soybean genome, and we integrated the transcriptomic data in response to Burkholderia ambifaria and Fusarium oxysporum infection to prioritize 5 candidate chitinase genes. According to the phylogenetic analysis with previously functionally characterized chitinase genes from 22 plant species, we chose 3 genes (GmChi01, GmChi02, and GmChi16) to obtain the over-expression Arabidopsis lines by Agrobacterium‐mediated transformation. Compare to the Col-0, transgenic Arabidopsis lines did not show significant differences in phenotypes of agronomic traits. Furthermore, the results of detached leaf assay and soil inoculation showed that over-expression of GmChi02 and GmChi16 in Arabidopsis reduced area under disease progress curve (AUDPC) and enhanced the survival rate of seedlings upon F. oxsporum f.sp. rapae infection. Although GmChi02 and GmChi16 significantly enhanced defense to F. oxsporum f.sp. rapae, only GmChi02 was significantly primed by B. ambifaria. This observation indicated plant chitinases may be induced by different PGPR in defense responses. According to the transcriptomic analysis of soybean in response to 6 PGPR, 9 chitinases were not induced by any of PGPR and 10 chitinases were significantly primed by at least one of PGPR. In conclusion, this study verified the functions of GmChi01, GmChi02 or GmChi16 in disease responses and provided a comprehensive analysis of 37 soybean chitinase genes in PGPR-induced defense priming. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:59:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:59:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第壹章 前人研究 1 1.1 導論 1 1.2 植物促生根際細菌與防禦預啟及誘導系統性抗病 4 1.3 病程相關蛋白 6 1.4 幾丁質酶 10 1.5 幾丁質酶與植物抗病反應 11 1.6 高通量定序於幾丁質酶參與抗病反應之研究 12 1.7 幾丁質酶於防禦預啟反應之研究探索 13 1.8 研究動機 14 第貳章 材料方法 15 2.1 大豆幾丁質酶基因之辨識 15 2.2 大豆幾丁質酶胺基酸序列之親緣樹分析 16 2.3 大豆轉錄體分析 16 2.4 大豆幾丁質酶基因擴增與純化 17 2.5 大豆幾丁質酶基因之表現載體構築 17 2.6 農桿菌勝任細胞備製與轉型 19 2.7 阿拉伯芥之栽培與花序浸漬轉殖法 20 2.8 阿拉伯芥葉片之RNA萃取及cDNA生合成 21 2.9 阿拉伯芥之反轉錄酶連鎖反應 22 2.10 阿拉伯芥之農藝性狀 22 2.11 阿拉伯芥接種Fusarium oxysporum f.sp. rapae之抗病反應 22 2.12 植物促生根際細菌之培養、定量與接種 23 2.13 大豆主根之RNA萃取與轉錄體分析 24 2.14 實驗數據統計與分析 25 第參章 結果 26 3.1 大豆幾丁質酶基因之辨識 26 3.2 大豆轉錄體中幾丁質酶之基因表現 27 3.3 大豆幾丁質酶與功能性驗證幾丁質酶之親緣樹分析 28 3.4 阿拉伯之芥農藝性狀 29 3.5 阿拉伯芥對Fusarium oxysporum f.sp. rapae之抗病反應 30 3.6 六種植物促生根際細菌預啟大豆幾丁質酶之基因表現 31 第肆章 討論 33 4.1 應用基因體分析探討大豆幾丁質酶基因 33 4.2 參與抗病反應與B. ambifaria預啟之大豆幾丁質酶基因 34 4.3 GmChi02及GmChi16增強阿拉伯芥對F. oxysporum之抗病能力 35 4.4 六種植物促生根際細菌預啟大豆幾丁質酶基因具差異性 36 4.5 研究總結與未來展望 37 參考文獻 38 表 63 圖 73 附錄 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 大豆 | zh_TW |
| dc.subject | 轉錄體學 | zh_TW |
| dc.subject | 阿拉伯芥轉殖技術 | zh_TW |
| dc.subject | 基因體學 | zh_TW |
| dc.subject | 幾丁質酶 | zh_TW |
| dc.subject | Defense priming | en |
| dc.subject | Genome-wide characterization analysis | en |
| dc.subject | Plant growth-promoting rhizobacteria (PGPR) | en |
| dc.subject | Chitinase | en |
| dc.subject | Arabidopsis transformation | en |
| dc.subject | Soybean | en |
| dc.title | 探討大豆幾丁質酶於植物促生根際細菌預啟防禦反應之基因表現與功能 | zh_TW |
| dc.title | Genome-wide Characterization of Soybean Chitinase Expression and Function in Plant Growth-Promoting Rhizobacteria-induced Defense Priming | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳志航;林柏安 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hang Wu;Po-An Lin | en |
| dc.subject.keyword | 大豆,阿拉伯芥轉殖技術,基因體學,轉錄體學,幾丁質酶, | zh_TW |
| dc.subject.keyword | Arabidopsis transformation,Chitinase,Defense priming,Genome-wide characterization analysis,Plant growth-promoting rhizobacteria (PGPR),Soybean, | en |
| dc.relation.page | 93 | - |
| dc.identifier.doi | 10.6342/NTU202303890 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 15.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
