Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author李沛錦zh_TW
dc.contributor.authorPei-Jin Lien
dc.date.accessioned2023-09-22T16:53:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] Y. Gao, C. Sun, T. Su, Design of highly stable thermally activated delayed fluorescence emitters via the overlap degree of HOMO-LUMO distributions, Journal of Molecular Structure, 1272, 134213 (2023)
[2] B. Madushani, M. Mamada, K. Goushi, T. Ba. Nguyen, H. Nakanotani, H. Kaji, C. Adachi, Multiple donor–acceptor design for highly luminescent and stable thermally activated delayed fluorescence emitters, Scientific Reports, 13, 7644 (2023)
[3] R. Skaisgiris, T. Serevičius, J. Dodonova, D. Banevičius, K. Kazlauskas, S. Tumkevičius, S. Juršėnas, Tuning of HOMO-LUMO localization for achieving thermally activated delayed fluorescence, Journal of Luminescence, 241, 118473(2022)
[4] Y. Im, M. Kim, Y. J. Cho, J. A. Seo, K. S. Yook, and J. Y. Lee, Molecular design strategy of organic thermally activated delayed fluorescence emitters, Chemistry of Materials, 29, 1946–1963 (2017).
[5] J. W. Tai, Y. Tang, K. Zhang, C. Z. Yang , Z. H. Pan , Y. C. Lin , Y. W. Shih, C. H. Chen, T. L. Chiu, J. H. Lee, C. K. Wang, C. C. Wu, J. Fan, 13.2% EQE near-infrared TADF OLED with emission peak at 761 nm, Chemical Engineering Journal, 452, 139534(2023)
[6] F. T. Carmona, O. S. Lee, E. Crovini, A. M. Neferu, C. Murawski, Y. Olivier, E. Z. Colman, M. C. Gather, Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Light-Emitting Diodes, Advanced Materials, 33, 2100677(2021)
[7] S. Y. Kim, W. I. Jeong, C. Mayr, Y. S. Park, K. H. Kim, J. H. Lee, C. K. Moon, W. Brütting, J. J. Kim, Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter, Advanced Functional Materials, 23, 3896-3900 (2013)
[8] X. Lv, L. Xu, M. Cang, R. Wang, M. Sun, H. Zhou, Y. Yu, Q. Sun, Y. Pan, Y. Xu, D. Hu, S. Xue, W. Yang, Pure-Blue Fluorescence Molecule for Nondoped Electroluminescence with External Quantum Efficiency Approaching 13%, CCS Chemistry, 2, 2557-2568(2020)
[9] S. Xiao, Y. Gao, R. Wang, H. Liu, W. Li, C. Zhou, S. Xue, S. T. Zhang, B. Yang, Y. Ma, Highly efficient hybridized local and charge-transfer (HLCT) Deep-blue electroluminescence with excellent molecular horizontal orientation, Chemical Engineering Journal, 440, 135911 (2022)
[10] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, G. Yuan, Effect of UV–ozone treatment on ITO and post-annealing on the performance of organic solar cells, Synthetic Metals, 159, 754-756(2009)
[11] K. C. Pan, S. W. Li, Y. Y. Ho, Y. J. Shiu, W. L. Tsai, M. Jiao, W. K. Lee, C. C. Wu, C. L. Chung, T. Chatterjee, Y. S. Li, K. T. Wong, H. C. Hu, C. C. Chen, M. T. Lee, Efficient and Tunable Thermally Activated Delayed Fluorescence Emitters Having Orientation-Adjustable CN-Substituted Pyridine and Pyrimidine Acceptor Units, Advanced Functional Materials, 26, 7560-7571(2016)
[12] K. Goushi, K. Yoshida, K. Sato, C. Adach, Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion, Nature Photonics, 6, pages253–258 (2012)
[13] X. Gong, C. H. Lu, W. K. Lee, P. Li, Y. H. Huang, Z. Chen, L. Zhan, C. C. Wu, S. L. Gong and C. L. Yang, Chemical Engineering Journal, 405, 126663(2021)
[14] J. H. Tan, J. M. Jin, W. C. Chen, C. Cao, R. Wang, Z. L. Zhu, Y. Huo and C. S. Lee, The Role of Balancing Carrier Transport in Realizing an Efficient Orange-Red Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diode, ACS Applied Materials & Interfaces, 14, 53120–53128. (2022)
[15] Y. Yu, H. Xing, D. Liu, M. Zhao, H. H. Y. Sung, I. D. Williams, J. W. Y. Lam, G. Xie, Z. Zhao, B. Z. Tang, Solution-processed AIEgen NIR OLEDs with EQE Approaching 15 %, Angewandte Chemie International Edition, 61, e202204279 (2022)
[16] Y. J. Yu, Y. Hu, S. Y. Yang, W. Luo, Y. Yuan, C. C. Peng, J. F. Liu, A. Khan, Z. Q. Jiang, L. S. Liao, Near-Infrared Electroluminescence beyond 800 nm with High Efficiency and Radiance from Anthracene Cored Emitters, Angewandte Chemie International Edition, 59,21578–2158(2020)
[17] J. F. Cheng, Z. H. Pan, K. Zhang, Y. Zhao , C. K. Wang, L. Ding, M.K. Fung, J. Fan, Interrupted intramolecular donor-acceptor interaction compensated by strong through-space electronic coupling for highly efficient near-infrared TADF with emission over 800 nm, Chemical Engineering Journal, 430, 132744(2022)
[18] J.X. Liang, Y. Tang, X. Wang, K. Zhang, Y. Shih, C. H. Chen, T.L. Chiu, P. J. Li, J. H. Lee, C. K. Wang, C. C. Wu, J. Fan, Highly efficient near-infrared thermally activated delayed fluorescence organic light-emitting diodes with emission beyond 800 nm, Journal of Materials Chemistry, 21, 6981-6988(2023)

[1]A. Bernanose, M. Comte, P. Vouaux, A new method of emission of light by certain organic compounds, The Journal of Chemical Physics, 50, 64–68 (1953)
[2] M. Pope, H. P. Kallmann, P. Magnante, Electroluminescence in Organic Crystals, The Journal of Chemical Physics, 38, 2042–2043 (1963).
[3] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Journal of Applied Physics, 51, 913-915. (1987)
[4]J. H. Burrogughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature, 347, 539-541(1990)
[5] G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, Jasmin M. B. Stefan, Brief history of OLEDs—Emitter development and industry milestones. Advanced Materials, 33, 2005630 (2021).
[6] K. Sun, W. Tian, C. Ge, F. Gu, Y. Zhou, W. Wang , Z. Cai , W. Jiang , Y. Sun, Creation of efficient solution-processed OLEDs via a strategy of the host-guest system constructing with two small cross-linkable TADF molecules, Organic Electronics, 101, 106417(2022)
[7] S. Sem, S. Jenatsch, P. Sahay, S. Züfle, M. Schmid, W. Brütting, B. Ruhstaller, Detailed electro-optical modeling of thermally-activated delayed fluorescent OLEDs with different host-guest concentrations, Organic Electronics, 107, 106553(2022)
[8] K. Okumoto, H. Kanno, Y. Hamaa, H. Takahashi, K. Shibata, Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%, Applied Physics, 89, 063504 (2006)
[9] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson & S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151–154 (1998)
[10] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device, Journal of Applied Physics, 90, 5048–5051 (2001)
[11] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer, Journal of Applied Physics, 79, 156–158 (2001)
[12] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, & C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature 492, 234–238 (2012)
[13] D. Berenis, G. Kreiza, S. Juršėnas, E. Kamarauskas, V. Ruibys, O. Bobrovas, P. Adomėnas, K. Kazlauskas, Different RISC rates in benzoylpyridine-based TADF compounds and their implications for solution-processed OLEDs, Dyes and Pigments, 182, 108579(2020)
[14] Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Organic light emitters exhibiting very fast reverse intersystem crossing. Nature Photonics, 14, 643–649 (2020)
[15] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics, Advanced Materials, 26, 7931– 7958(2014)
[16] M. Vasilopoulou, A. R. M. Yusoff, M. Daboczi, J. Conforto, A. E. X. Gavim, W. J. Silva, A. G. Macedo, A. Soultati, G. Pistolis, F. K. Schneider, Y. Dong, P. Jacoutot, G. Rotas, J. Jang, G. C. Vougioukalakis, C. L. Chochos, J. S. Kim, N. Gasparini, High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence, Nature Communications, 12, 4868 (2021).
[17] Y. Fu, H. Liu, B. Z. Tang, Z. Zhao, Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4%, Nature Communications, 14, 2019 (2023).
[18] X. C. Fan, K. Wang, Y. Z. Shi, Y. C. Cheng, Yi. Ting. Lee, J. Yu, X. K. Chen, C. Adachi, X. H. Zhang, Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design, Nature Photonics, 17, 280–285 (2023)
[19] Y. Shaw, H. Wang, Z. Xie, M. Shen, R. Huang, Y. Miao, G. Liu, T. Yu, W. Huang, NIR TADF emitters and OLEDs: challenges, progress, and perspectives, Chemical Science, 13, 8906-8923(2022)

[1] W. Jiang, G. Zhang, G. Zhao, X. Wang, W. Tian, Y. Sun, Novel benzonitrile-based AIE host with high triplet energy for highly efficient solution-processed blue TADF OLEDs, Dyes and Pigments,110,11037(2023)
[2] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, Journal of Chemical Education, 95, 2, 197–206(2017).
[3] A. K. Havare, M. Can, S. Demic, M. Kus, S. Icli, The performance of OLEDs based on sorbitol doped PEDOT:PSS, Synthetic Metals, 161, 2734-2738(2012).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89972-
dc.description.abstract有機發光二極體(organic light-emitting diode, OLED)比液晶顯示器LCD,有更佳的發光色彩,高對比度與應用在可彎曲面板的優勢。而OLED發光材料與元件結構有許多選擇。本篇論文主要研究利用熱激活化螢光(thermally activated delayed fluorescence, TADF)材料,製做出近紅外光波段具有高外部量子效率(external quantum efficiency, EQE)的OLED元件。
本篇論文的第一部分研究TADF材料TCN-TPA,具有多氰基的受體,採用真空蒸鍍法製作元件及薄膜,量測摻雜在mCPCN、CBP主體材料後的光物理特性,並選用CBP做為主體材料,做成元件後發光頻譜較紅移。透過TCN-TPA不同的摻雜濃度,薄膜PLQY可達5.7%~30.5%,元件在800 nm以上的近紅外光波段時,EQE可達到2.4%,在841 nm時EQE值則為1.1%。
本篇論文的第二部分研究TADF材料EP-TPA,其具有吡啶基的受體,外接吡啶。此材料採用旋轉塗佈方式製作元件及薄膜,透過試驗PVK、CBP與mCPCN等主體材料摻雜EP-TPA,量測不同的光物理特性,最後成功使用CBP摻雜12 wt.%的EP-TPA做出深紅光元件。
zh_TW
dc.description.abstractOrganic light-emitting diodes(OLEDs) have better luminous color, higher contrast ratio and the advantages in applications of flexible panels in comparison with liquid crystal display LCDs. There are many options for OLED emitting materials and device structures. This thesis studies thermally activated delayed fluorescence (TADF) materials. Our goal is to make OLED devices with high external quantum efficiency (EQE) in the near-infrared band.
The first part of this thesis studies TCN-TPA, which is a material containing more cyano group(-CN) to its accepter unit. Its photophysical properties after doping with the mCPCN and CBP host are characterized. Finally, CBP is selected as the host material for OLEDs because the emission spectrum in CBP is more red-shifted than in mCPCN.
With different doping concentrations of TCN-TPA, it is found that the PLQY of the film can reach 5.7%~30.5%. When the device is in the near-infrared band above 800 nm, the EQE can reach 2.4%. The EQE value at 841nm is 1.1%.
The second part of this paper studies the TADF material EP-TPA, which is a material containing external pyridyls to its acceptor. This material adopts the solution process to make the emitting film. Through the test of PVK, CBP and mCPCN as the host for EP-TPA, emitting photophysical properties were measured. Finally, CBP was successfully used as the host for EP-TPA to make the deep-red TADF OLEDs.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:53:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:53:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝………………………………………………………………………..……………..I
摘要………………………………………………………………………………...……II
Abstract…………………………………………………………………………....……III
目次………………………………………………………...…………….……………. V
圖目次……………………………………………..……………………..………….. VII
第一章 緒論…………………………………………………….…………..……….….1
1.1有機發光二極體歷史簡介…………………………….………………………1
1.2主客體材料摻雜的發光層…………………………….…………..……….….2
1.3不同材料放光原理…………………………………….………………………2
1.3.1螢光材料與磷光材料放光原理…………………..………………………2
1.3.2 TADF延遲螢光材料放光原理……………………..…………..…….…..3
1.4論文主題動機與架構…………………………………..….……..…………3
第一章參考資料………………………………………….….……….……………5
第一章圖表……………………………………………….…………………….….8
第二章 近紅外光熱激活化延遲螢光有機發光材料及元件…..………………….…11
2.1前言………………………………………………………..……………..….…11
2.2研究方法…………………………………………………..……………..….…11
2.2.1材料…………………………………………………..…………...…...…11
2.2.2光物理特性…………………………………………..…………..….....…12
2.2.3水平發光偶極比……………………………………..……………......…13
2.2.4元件製作與量測………………………………….…..………….…....…13
2.3結果與討論…………………………………………………..……….…….….14
2.3.1光物理特性……………………………………………..…………….….14
2.3.2水平發光偶極比……………………………………….……..…….….16
2.3.3元件結果與討論…………………………………………………....….16
2.4總結……………………………………………………………..……………18
第二章參考資料……………………………………………………….…………….20
第二章圖表…………………………………………………………….…………….23
第三章 深紅光熱激活化延遲螢光有機發光材料及元件…………………………44
3.1前言……………………………………………………………….……….…44
3.2研究方法………………………………………………………….……….…44
3.2.1材料…………………………………………………………………….44
3.2.2光物理特性…………………………………………………………….44
3.2.3水平發光偶極比……………………………………………………….45
3.2.元件製作與量測………………………………………………………....45
3.3結果與討論…………………………………………………………………..46
3.3.1光物理特性…………………………………………………………….46
3.3.2水平發光偶極比……………………………………………………….47
3.3.3元件結果與討論……………………………………………………….47
3.4總結………………………………………….……………………………….48
第三章參考資料……………………………………………………………….….…49
第三章圖表…………………………………………………………………….….…50
第四章 總結…………………………………………………………………...….…65
-
dc.language.isozh_TW-
dc.subject旋轉塗佈zh_TW
dc.subject元件外部量子效率zh_TW
dc.subject有機發光二極體zh_TW
dc.subject熱激活化延遲螢光zh_TW
dc.subject近紅外光材料zh_TW
dc.subjectorganic light-emitting diodesen
dc.subjectthermally activated delayed fluorescenceen
dc.subjectnear-infrared emitting materialsen
dc.subjectsolution processen
dc.subjectexternal quantum efficiencyen
dc.title深紅與近紅外波段熱激活化延遲螢光材料有機發光元件研究zh_TW
dc.titleInvestigations on Novel Deep-red and Near-Infrared Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林昶宇;蔡志宏zh_TW
dc.contributor.oralexamcommitteeChang-Yu Lin;Chih-Hung Tsaien
dc.subject.keyword熱激活化延遲螢光,有機發光二極體,近紅外光材料,元件外部量子效率,旋轉塗佈,zh_TW
dc.subject.keywordthermally activated delayed fluorescence,organic light-emitting diodes,near-infrared emitting materials,external quantum efficiency,solution process,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202303080-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.22 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved