請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89966完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊裕澤 | zh_TW |
| dc.contributor.advisor | Yuh-Jzer Joung | en |
| dc.contributor.author | 蔡俊易 | zh_TW |
| dc.contributor.author | Jyun-Yi Cai | en |
| dc.date.accessioned | 2023-09-22T16:52:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | [1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
[2] A. Celikyilmaz, E. Clark, and J. Gao. Evaluation of text generation: A survey. arXiv preprint arXiv:2006.14799, 2020. [3] Q. Chen, J. Lin, Y. Zhang, H. Yang, J. Zhou, and J. Tang. Towards knowledgebased personalized product description generation in e-commerce. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3040–3050, 2019. [4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. [5] Z. Du. Gpt2-chinese: Tools for training gpt2 model in chinese language. https://github.com/Morizeyao/GPT2-Chinese, 2019. [6] Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan. Style transfer in text: Exploration and evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. [7] M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t. Yih, and M. Galley. A knowledge-grounded neural conversation model. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. [8] M. Grootendorst. Keybert: Minimal keyword extraction with bert. Zenodo, 2020. [9] X. Guo, Q. Zeng, M. Jiang, Y. Xiao, B. Long, and L. Wu. Automatic controllable product copywriting for e-commerce. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 2946–2956, 2022. [10] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing. Toward controlled generation of text. In International conference on machine learning, pages 1587–1596. PMLR, 2017. [11] L. A. Jiang, Z. Yang, and M. Jun. Measuring consumer perceptions of online shopping convenience. Journal of Service management, 2013. [12] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015. [13] P. Li, H. Zhang, X. Liu, and S. Shi. Rigid formats controlled text generation. In Proceedings of the 58th annual meeting of the association for computational linguistics, pages 742–751, 2020. [14] M. Limayem, M. Khalifa, and A. Frini. What makes consumers buy from internet? a longitudinal study of online shopping. IEEE Transactions on systems, man, and Cybernetics-Part A: Systems and Humans, 30(4):421–432, 2000. [15] M. R. Mane, S. Kedia, A. Mantha, S. Guo, and K. Achan. Product title generation for conversational systems using bert. arXiv preprint arXiv:2007.11768, 2020. [16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26, 2013. [17] M.-T. Nguyen, P.-T. Nguyen, V.-V. Nguyen, and Q.-M. Nguyen. Generating product description with generative pre-trained transformer 2. In 2021 6th International Conference on Innovative Technology in Intelligent System and Industrial Applications (CITISIA), pages 1–7. IEEE, 2021. [18] S. Novgorodov, I. Guy, G. Elad, and K. Radinsky. Generating product descriptions from user reviews. In The World Wide Web Conference, pages 1354–1364, 2019. [19] OpenAI. Language models. https://openai.com/research/language-models, 2021. [20] OpenAI. Gpt-4 technical report, 2023. [21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318, 2002. [22] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. [23] C. Rane, G. Dias, A. Lechervy, and A. Ekbal. Improving neural text style transfer by introducing loss function sequentiality. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2197–2201, 2021. [24] J. Su. Wobert: Word-based chinese bert model-zhuiyiai. Technical report, 2020. [25] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27, 2014. [26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [27] J. Wang, Y. Hou, J. Liu, Y. Cao, and C.-Y. Lin. A statistical framework for product description generation. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 187–192, 2017. [28] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89966 | - |
| dc.description.abstract | 本篇文章的研究目的為找出如何有效地透過預訓練語言模型生成商品文案,一篇成功的商品文案應具備不同敘述類型的多樣性、保留商品相關資訊的準確性以及提高與商品內容本身的相關性。
而在本研究中透過在GPT-2微調的過程中分別加入分類標籤、關鍵字組作為嵌入維度,使模型能夠學習如何根據輸入的內容生成相對應的內容。在以生成不同敘述類型為目標的實驗中,採用不同類型詞彙數量作為分類標準的主題辭典,在生成結果中獲得平均82.8%的準確率,能夠協助模型生成相對應敘述類型的文本。 以保留商品資訊為重點的實驗中,則是加入採用KeyBERT擷取出的關鍵字組能夠提高相關資訊出現的機率。最後在添加相關與非相關敘述類型的關鍵字組實驗中,結果顯示即使是添加非相關敘述類型的關鍵字組,模型也能考慮其內容並生成相對應的文本,同時也保持一定的敘述類型準確度;而添加相關敘述類型的關鍵字組則能夠提升敘述類型的準確度。 | zh_TW |
| dc.description.abstract | The research aims to explore effective methods for generating product copywriting using pre-trained language models. In this study, we fine-tuned the GPT-2 model by incorporating classification labels, keyword sets as embedding dimensions. This allowed the model to learn how to generate content based on the given input. Experimental results targeting different narrative styles achieved an average accuracy of 82.8% by utilizing topic dictionaries with varying vocabulary sizes as classification criteria, enabling the model to generate text corresponding to the desired narrative style.
In the experiment focusing on preserving product information, the inclusion of keyword phrases extracted using KeyBERT was found to enhance the probability of relevant information generated. Furthermore, in the experiment involving the addition of relevant and non-relevant descriptive keyword, the results demonstrated that the model was capable of considering the content and generating corresponding text even with the presence of non-relevant keywords, while also maintaining a certain level of accuracy in the descriptive style. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:52:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:52:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要i
英文摘要ii 目錄iii 圖目錄v 表目錄vii 第一章緒論1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章文獻探討4 2.1 商品敘述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 商品敘述生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 商品敘述風格. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 自然語言生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 自然語言生成模型架構. . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 預訓練語言模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 控制文本生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 文本控制生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 評估方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 自動評估指標. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 商品敘述生成類型驗證. . . . . . . . . . . . . . . . . . . . . . . 11 2.4.3 人工評估. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 文獻探討總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 第三章研究方法14 3.1 研究架構概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 資料集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 商品敘述與文案主題. . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 關鍵字擷取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 模型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 研究驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第四章研究結果22 4.1 資料處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 商品種類. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 主題辭典分類. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.3 LDA 主題模型分類. . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 實驗結果分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 無關鍵字控制生成之主題辭典. . . . . . . . . . . . . . . . . . . 25 4.2.2 無關鍵字控制生成之LDA 主題分類. . . . . . . . . . . . . . . . 28 4.2.3 有關鍵字控制生成. . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.4 有關鍵字控制生成之相關與非相關敘述類型. . . . . . . . . . . 32 4.2.5 人工評估. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 模板化生成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 第五章結論40 5.1 研究成果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 研究限制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.4 未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 參考文獻45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 主題辭典 | zh_TW |
| dc.subject | 商品文案生成 | zh_TW |
| dc.subject | GPT-2 | zh_TW |
| dc.subject | 文案風格 | zh_TW |
| dc.subject | GPT-2 | en |
| dc.subject | Product copywriting gener | en |
| dc.subject | Content style | en |
| dc.subject | Topic model | en |
| dc.title | 基於預訓練語言模型的多面向電商產品文案生成 | zh_TW |
| dc.title | Pre-trained Model Based Multi-faceted E-commerce Product Description Generation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏志平;陳文華 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ping Wei;Wun-Hwa Chen | en |
| dc.subject.keyword | 商品文案生成,GPT-2,主題辭典,文案風格, | zh_TW |
| dc.subject.keyword | Product copywriting gener,GPT-2,Topic model,Content style, | en |
| dc.relation.page | 47 | - |
| dc.identifier.doi | 10.6342/NTU202303634 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2028-08-08 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 564.59 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
