請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊燿州 | zh_TW |
| dc.contributor.advisor | Yao-Joe Yang | en |
| dc.contributor.author | 黃志霖 | zh_TW |
| dc.contributor.author | Chih-Lin Huang | en |
| dc.date.accessioned | 2023-09-22T16:51:09Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | H. Yu-fei, G. Zheyuan, X. Zhexin, G. Shaoya, Y. Xingbang, R. Ziyu, W. Tianmiao, and W. Li, “Universal soft pneumatic robotic gripper with variable effective length,” 2016 35th Chinese Control Conference (CCC), pp. 6109-6114, 2016.
M. A. Horvath, I. Wamala, E. Rytkin, E. Doyle, C. J. Payne, T. Thalhofer, I. Berra, A. Solovyeva, M. Saeed, S. Hendren, E. T. Roche, P. J. del Nido, C. J. Walsh, and N. V. Vasilyev, “An Intracardiac Soft Robotic Device for Augmentation of Blood Ejection from the Failing Right Ventricle,” Annals of Biomedical Engineering, vol. 45, no. 9, pp. 2222-2233, 2017. C. Wang, C. Wang, Z. Huang, and S. Xu, “Materials and Structures toward Soft Electronics,” Advanced Materials, vol. 30, no. 50, pp. 1801368, 2018. Z. Q. Tang, H. L. Heung, K. Y. Tong, and Z. Li, “Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 256-276, 2021. J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-based multimodal human-machine interface to real-time control of a soft robot hand,” Frontiers in neurorobotics, vol. 13, pp. 7, 2019. Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, and X. Wang, “Insect-scale fast moving and ultrarobust soft robot,” Science robotics, vol. 4, no. 32, pp. eaax1594, 2019. H. Yuk, D. Kim, H. Lee, S. Jo, and J. H. Shin, “Shape memory alloy-based small crawling robots inspired by C. elegans,” Bioinspiration & biomimetics, vol. 6, no. 4, pp. 046002, 2011. A. Lendlein, and O. E. C. Gould, “Reprogrammable recovery and actuation behaviour of shape-memory polymers,” Nature Reviews Materials, vol. 4, no. 2, pp. 116-133, 2019. H. Meng, and G. Li, “A review of stimuli-responsive shape memory polymer composites,” Polymer, vol. 54, no. 9, pp. 2199-2221, 2013. Y. S. Zhang, and A. Khademhosseini, “Advances in engineering hydrogels,” Science, vol. 356, no. 6337, pp. eaaf3627, 2017. H. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, and X. Zhao, “Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water,” Nature Communications, vol. 8, no. 1, pp. 14230, 2017. A. O’Halloran, F. O’Malley, and P. McHugh, “A review on dielectric elastomer actuators, technology, applications, and challenges,” Journal of Applied Physics, vol. 104, no. 7, 2008. Y. Wang, W. Huang, Y. Wang, X. Mu, S. Ling, H. Yu, W. Chen, C. Guo, M. C. Watson, Y. Yu, L. D. Black, M. Li, F. G. Omenetto, C. Li, and D. L. Kaplan, “Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior,” Proceedings of the National Academy of Sciences, vol. 117, no. 25, pp. 14602-14608, 2020. M. Duduta, D. R. Clarke, and R. J. Wood, "A high speed soft robot based on dielectric elastomer actuators," in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4346-4351, 2017 A. Zatopa, S. Walker, and Y. Menguc, “Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots,” Soft robotics, Vol. 5, No.3, pp. 258-271, 2018. R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft robot,” Proceedings of the national academy of sciences, vol. 108, no. 51, pp. 20400-20403, 2011. H. Gu, Q. Boehler, H. Cui, E. Secchi, G. Savorana, C. De Marco, S. Gervasoni, Q. Peyron, T.-Y. Huang, and S. Pane, “Magnetic cilia carpets with programmable metachronal waves,” Nature communications, vol. 11, no. 1, pp. 2637, 2020. Y. Yang, B. Hou, J. Chen, H. Wang, P. Jiao, and Z. He, “High-speed soft actuators based on combustion-enabled transient driving method (TDM),” Extreme Mechanics Letters, vol. 37, pp. 100731, 2020. C. M. Yakacki, M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N. Bowman, “Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction,” RSC Advances, vol. 5, no. 25, pp. 18997-19001, 2015. C. J. Camargo, H. Campanella, J. E. Marshall, N. Torras, K. Zinoviev, E. M. Terentjev, and J. Esteve, “Batch fabrication of optical actuators using nanotube–elastomer composites towards refreshable Braille displays,” Journal of Micromechanics and Microengineering, vol. 22, no. 7, pp. 075009, 2012. D. J. Roach, C. Yuan, X. Kuang, V. C.-F. Li, P. Blake, M. L. Romero, I. Hammel, K. Yu, and H. J. Qi, “Long Liquid Crystal Elastomer Fibers with Large Reversible Actuation Strains for Smart Textiles and Artificial Muscles,” ACS Applied Materials & Interfaces, vol. 11, no. 21, pp. 19514-19521, 2019. H. Zeng, O. M. Wani, P. Wasylczyk, and A. Priimagi, “Light-Driven, Caterpillar-Inspired Miniature Inching Robot,” Macromolecular Rapid Communications, vol. 39, no. 1, pp. 1700224, 2018. S.-J. Ge, T.-P. Zhao, M. Wang, L.-L. Deng, B.-P. Lin, X.-Q. Zhang, Y. Sun, H. Yang, and E.-Q. Chen, “A homeotropic main-chain tolane-type liquid crystal elastomer film exhibiting high anisotropic thermal conductivity,” Soft Matter, vol. 13, no. 32, pp. 5463-5468, 2017. M. Tabrizi, T. H. Ware, and M. R. Shankar, “Voxelated Molecular Patterning in Three-Dimensional Freeforms,” ACS Applied Materials & Interfaces, vol. 11, no. 31, pp. 28236-28245, 2019. Q. He, Z. Wang, Y. Wang, Z. Song, and S. Cai, “Recyclable and Self-Repairable Fluid-Driven Liquid Crystal Elastomer Actuator,” ACS Applied Materials & Interfaces, vol. 12, no. 31, pp. 35464-35474, 2020. S. Schuhladen, F. Preller, R. Rix, S. Petsch, R. Zentel, and H. Zappe, “Iris-Like Tunable Aperture Employing Liquid-Crystal Elastomers,” Advanced Materials, vol. 26, no. 42, pp. 7247-7251, 2014. Z. Hu, Y. Li, and J.-a. Lv, “Phototunable self-oscillating system driven by a self-winding fiber actuator,” Nature Communications, vol. 12, no. 1, pp. 3211, 2021. M. Wang, X.-B. Hu, B. Zuo, S. Huang, X.-M. Chen, and H. Yang, “Liquid crystal elastomer actuator with serpentine locomotion,” Chemical Communications, vol. 56, no. 55, pp. 7597-7600, 2020. X. Yang, Y. Chen, X. Zhang, P. Xue, P. Lv, Y. Yang, L. Wang, and W. Feng, “Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods,” Nano Today, vol. 43, pp. 101419, 2022. M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, and P. Wasylczyk, “Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale,” Advanced Optical Materials, vol. 4, no. 11, pp. 1689-1694, 2016. M. J. Ford, M. Palaniswamy, C. P. Ambulo, T. H. Ware, and C. Majidi, “Size of liquid metal particles influences actuation properties of a liquid crystal elastomer composite,” Soft Matter, vol. 16, no. 25, pp. 5878-5885, 2020. X. Tang, H. Li, T. Ma, Y. Yang, J. Luo, H. Wang, and P. Jiang, “A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications,” Actuators, vol. 11, no. 11, pp. 331, 2022. J. Shin, M. Kang, T. Tsai, C. Leal, P. V. Braun, and D. G. Cahill, “Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation,” ACS Macro Letters, vol. 5, no. 8, pp. 955-960, 2016. Z. Wu, P. Cheng, W. Zhao, J. Fang, T. Xu, and D. Chen, “Allyl sulfide-based visible light-induced dynamically reshaped liquid crystalline elastomer/SWCNT nanocomposites capable of multimode NIR photomechanical actuations,” New Journal of Chemistry, vol. 44, no. 26, pp. 10902-10910, 2020. A. Agrawal, H. Chen, H. Kim, B. Zhu, O. Adetiba, A. Miranda, A. Cristian Chipara, P. M. Ajayan, J. G. Jacot, and R. Verduzco, “Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture,” ACS Macro Letters, vol. 5, no. 12, pp. 1386-1390, 2016. S. Mohanty, “Liquid crystals — The ‘fourth’ phase of matter,” Resonance, vol. 8, no. 11, pp. 52-70, 2003/11/01, 2003. C. D. Hoke, and P. J. Bos, “Multidimensional alignment structure for the liquid crystal director field,” Journal of Applied Physics, vol. 88, no. 5, pp. 2302-2304, 2000. V. K. Rapalli, T. Waghule, N. Hans, A. Mahmood, S. Gorantla, S. K. Dubey, and G. Singhvi, “Insights of lyotropic liquid crystals in topical drug delivery for targeting various skin disorders,” Journal of Molecular Liquids, vol. 315, pp. 113771, 2020. S. Srigengan, H. Liu, M. Osipov, R. Mandle, S. Cowling, and H. Gleeson, “Anomalies in the twist elastic behaviour of mixtures of calamitic and bent-core liquid crystals,” Liquid Crystals, vol. 47, no. 6, pp. 895-907, 2020. P.-G. De Gennes, and J. Prost, The physics of liquid crystals: Oxford university press, 1993. H. Zocher, “The effect of a magnetic field on the nematic state,” Transactions of the Faraday Society, vol. 29, no. 140, pp. 945-957, 1933. C. Oseen, “The theory of liquid crystals,” Transactions of the Faraday Society, vol. 29, no. 140, pp. 883-899, 1933. F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discussions of the Faraday Society, vol. 25, pp. 19-28, 1958. J. Algorri, V. Urruchi, P. Pinzón, and J. Sánchez-Pena, “Modeling electro-optical response of nematic liquid crystals by numerical methods,” Optica Pura y Aplicada, vol. 46, no. 4, 2013. D. R. Merkel, R. K. Shaha, C. M. Yakacki, and C. P. Frick, “Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading,” Polymer, vol. 166, pp. 148-154, 2019. C. E. Hoyle, and C. N. Bowman, “Thiol–ene click chemistry,” Angewandte Chemie International Edition, vol. 49, no. 9, pp. 1540-1573, 2010. P.-M. Robitaille, “Kirchhoff’s law of thermal emission: 150 years,” Progress in Physics, vol. 4, pp. 3-13, 2009. J.-W. Xu, K. Yao, and Z.-K. Xu, “Nanomaterials with a photothermal effect for antibacterial activities: an overview,” Nanoscale, vol. 11, no. 18, pp. 8680-8691, 2019. L. Dong, and Y. Zhao, “Photothermally driven liquid crystal polymer actuators,” Materials Chemistry Frontiers, vol. 2, no. 11, pp. 1932-1943, 2018. D. L. Hu, J. Nirody, T. Scott, and M. J. Shelley, “The mechanics of slithering locomotion,” Proceedings of the National Academy of Sciences, vol. 106, no. 25, pp. 10081-10085, 2009. J. K. Hopkins, and S. K. Gupta, “Design and modeling of a new drive system and exaggerated rectilinear-gait for a snake-inspired robot,” Journal of Mechanisms and Robotics, vol. 6, no. 2, pp. 021001, 2014. C. Branyan, R. L. Hatton, and Y. Mengüç, “Snake-inspired kirigami skin for lateral undulation of a soft snake robot,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1728-1733, 2020. N. M. L. Huq, M. R. Khan, A. A. Shafie, M. M. Billah, and S. M. Ahmmad, “Motion investigation of a snake robot with different scale geometry and coefficient of friction,” Robotics, vol. 7, no. 2, pp. 18, 2018. L. Zheng, Y. Zhong, Y. Gao, J. Li, Z. Zhang, Z. Liu, and L. Ren, “Coupling effect of morphology and mechanical properties contributes to the tribological behaviors of snake scales,” Journal of Bionic Engineering, vol. 15, pp. 481-493, 2018. J. Gray, “The mechanism of locomotion in snakes,” Journal of experimental biology, vol. 23, no. 2, pp. 101-120, 1946. H. Marvi, J. P. Cook, J. L. Streator, and D. L. Hu, “Snakes move their scales to increase friction,” Biotribology, vol. 5, pp. 52-60, 2016. B. S. Yilbas, A. Al-Sharafi, and H. Ali, Self-cleaning of surfaces and water droplet mobility: Elsevier, 2019. J. Yan, Y. Lu, G. Chen, M. Yang, and Z. Gu, “Advances in liquid metals for biomedical applications,” Chemical Society Reviews, vol. 47, no. 8, pp. 2518-2533, 2018. M. Rogóż, K. Dradrach, C. Xuan, and P. Wasylczyk, “A millimeter‐scale snail robot based on A light‐powered liquid crystal elastomer continuous actuator,” Macromolecular rapid communications, vol. 40, no. 16, pp. 1900279, 2019. L. Dong, X. Tong, H. Zhang, M. Chen, and Y. Zhao, “Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator,” Materials Chemistry Frontiers, vol. 2, no. 7, pp. 1383-1388, 2018. C. Ahn, X. Liang, and S. Cai, “Bioinspired design of light‐powered crawling, squeezing, and jumping untethered soft robot,” Advanced materials technologies, vol. 4, no. 7, pp. 1900185, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89962 | - |
| dc.description.abstract | 本研究受蛇直線爬行運動所啟發,開發具載物功能之光熱驅動液晶彈性體微形仿生軟性爬行機器人。爬行機器人由一對向外張開的後腳、一對具有爪狀的前腳以及內凹狀載物平台所構成。元件透過由微影製程所製作的之模具翻印而成,利用單軸配向定型,並在上方選擇性塗布光熱薄膜。外張的後腳在致動時,將推動身體前進。而特殊爪狀的前腳設計,有助於元件在回復時提供摩擦各向異性,順勢將後腳拉回。內凹狀的載物平台,提供元件致動時穩定的運輸能力。當受到近紅外光的照射加熱下,塗布光熱薄膜的區域將會產生宏觀上形變。搭配前後腳尺寸上的差異及前腳爪狀的設計,提供元件致動過程中前後不對等的摩擦力,使其往向前爬行,模擬蛇之直線爬行時之鱗片運動。
實驗結果顯示,光熱薄膜能有效提供光轉熱之能力,能在小於1秒內提升到液晶彈性體的相變溫度。液態金屬的加入能夠提升元件傳遞與散發熱能,使加熱及冷卻響應時間減少50%。元件在無負載的情況下,速度達每分鐘1.96身長。元件在負載情況下仍然擁有良好的速度,負載在7mg下仍保有每分鐘0.89身長的速度。此外,元件在多次驅動之下,依然保持記憶效應,擁有良好的重複性。在未來的研究中,亦可將透過不同設計的爬行機器人,應用在環境探勘等領域中。 | zh_TW |
| dc.description.abstract | This work presents a light-driven miniaturized soft robot with the ability of transporting cargo. The proposed device comprises four legs and a concave cargo platform, and is made of liquid crystal elastomer (LCE). The device is fabricated using a simple lithography-based molding process with SU-8 photoresist. A photothermal thin film, which is composed of liquid metal and acrylic copolymer, is selectively coated on the LCE structure for effectively converting light energy into heat for actuation. The locomotion of the actuator is inspired by the rectilinear movement of snakes. While heated by near-infrared illumination, the LCE structure deforms due to the LC-to-isotropic phase transition phenomenon. The special asymmetric design of the front and rear legs results in asymmetric friction, and thus induces the forward crawling motion. The rear legs are round-shaped and larger than the front legs to provide greater friction force while actuating and push the device forward. The claw-like front legs are inspired by snake scales to fix on the ground while the rear legs recovering. Experimental results demonstrate that under conditions of no cargo load, the robot achieves a speed of 1.96 body length (BL) per minute. While carrying a cargo of 7 mg, the actuator maintains a speed of 0.89 BL/min. In addition, the effect of the length of the rear legs was systematically investigated. The measurement results indicate that the devices with longer rear legs crawl faster while maintaining the maximum device inclined angle to be less than 20 degree. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:51:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:51:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 圖目錄 xi 表目錄 xv 符號說明 xvii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 軟性致動器驅動方式 2 1.2.2 單軸配向液晶彈性體製作方法 6 1.2.3 液晶彈性體軟性致動器之驅動方式 9 1.2.4 使用液晶彈性體製作之軟性爬行致動器 12 1.2.5 液態金屬用於軟性材料 14 1.3 研究動機與目的 15 1.4 論文架構 16 第二章 研究理論基礎 19 2.1 液晶材料介紹 19 2.1.1 液晶材料相態 19 2.1.2 液晶材料分類 20 2.2 液晶材料性質 22 2.2.1 分子排列秩序參數 22 2.2.2 液晶連續體理論 24 2.3 液晶彈性體 25 2.3.1 麥可加成反應 27 2.3.2 液晶彈性體多重配向 28 2.4 光熱效應物理機制 29 2.5 生物啟發 30 第三章 元件設計與製程 31 3.1 元件設計 31 3.1.1 液晶彈性體結構 32 3.1.2 光熱薄膜 33 3.2 元件工作原理 34 3.3 元件製作 36 3.3.1 液晶彈性體模具製作 37 3.3.2 液晶彈性體預聚合物調配 46 3.3.3 光熱薄膜製作 49 3.3.4 液晶彈性體配向製作 53 3.4 元件製作結果 54 第四章 量測結果與討論 57 4.1 材料特性量測 57 4.1.1 不同材料光熱轉換效率量測 57 4.2 元件特性量測 61 4.2.1 不同元件特性量測 62 4.2.2 元件爬行測試 66 4.2.3 元件負載性能測試 71 4.2.4 元件載物展示 72 4.2.5 本研究與其他光熱驅動致動器比較 73 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76 參考文獻 77 附錄A 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 仿生爬行機器人 | zh_TW |
| dc.subject | 液晶彈性體 | zh_TW |
| dc.subject | 液態金屬 | zh_TW |
| dc.subject | 微影製程 | zh_TW |
| dc.subject | 單軸配向 | zh_TW |
| dc.subject | 光熱驅動 | zh_TW |
| dc.subject | Miniaturized actuator | en |
| dc.subject | Cargo transporting | en |
| dc.subject | Light-driven | en |
| dc.subject | Liquid crystal elastomer | en |
| dc.subject | Rectilinear locomotion | en |
| dc.title | 具有載物功能之微型液晶彈性體爬行機器人 | zh_TW |
| dc.title | A Miniaturized Liquid Crystal Elastomer Soft Robot with Cargo Transporting Capability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳國聲;蘇裕軒 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Shen Chen;Yu-Hsuan Su | en |
| dc.subject.keyword | 仿生爬行機器人,液晶彈性體,液態金屬,單軸配向,光熱驅動,微影製程, | zh_TW |
| dc.subject.keyword | Liquid crystal elastomer,Miniaturized actuator,Cargo transporting,Light-driven,Rectilinear locomotion, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202303546 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
