請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳琪芳 | zh_TW |
| dc.contributor.advisor | Chi-Fang Chen | en |
| dc.contributor.author | 陳志宇 | zh_TW |
| dc.contributor.author | Chih-Yu Chen | en |
| dc.date.accessioned | 2023-09-22T16:45:06Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 4C Offshore, "Global Offshore Wind Speeds Rankings," [Online]. Available: https://www.4coffshore.com/windfarms/windspeeds.aspx. [Accessed 10 12 2021].
R. R. Reeves, M. L. Dalebout, T. A. Jefferson, L. Karczmarski, K. Laidre, G. O’Corry-Crowe, L. Rojas-Bracho, E. R. Secchi, E. Slooten, B. D. Smith, J. -Y. Wang, K. Zhou, "Sousa chinensis (eastern Taiwan Strait subpopulation)," in IUCN Red List of Threatened Species., 2008. J. -Y. Wang, & A. -C. Wang, "Sousa chinensis ssp. taiwanensis (amended version of 2017 assessment) The IUCN Red List of Threatened Species 2018: e.T133710A122515524," 2018. [Online]. Available: https://www.iucnredlist.org/species/133710/122515524. 周蓮香、丁建均、林幸助、孫建平, 中華白海豚族群生態與 河口棲地監測(II), 行政院農業委員會林務局補助研究計畫, 臺北, 2019. V. Raoult, A. P. Colefax, B. M. Allan, D. Cagnazzi, N. Castelblanco-Martinez, D. Ierodiaconou, et al., "Operational Protocols for the Use of Drones in Marine Animal Research," Drones, vol. 4, no. 4, p. 35, 2020. T. -Y. Chien, C. -F. Chen, and Z. -Y. Chen, "Study of Taiwanese White Dolphins Detection and Tracking Techniques by utilizing Autonomous Unmanned Aerial Vehicles," in OCEANS 2022, Hampton Roads, 2022. 錢定遠, 智能無人機之鯨豚偵測追蹤技術研究, 國立臺灣大學工程科學及海洋工程學系碩士論文, 2021. R. S. Wells, M. J. Cremer, L. G. Berninsone, D. Albareda, K. A. Wilkinson, M. A. Stamper, R. L. Paitach, P. Bordino, "Tagging, ranging patterns, and behavior of franciscana dolphins (Pontoporia blainvillei) off Argentina and Brazil: Considerations for conservation," Marine Mammal Science, vol. 38, no. 2, pp. 571-605, 2022. P. Vanessa, S. Alastair, O. Martin, R. Dylan, Jonsen Ian D., Grech Alana, Harcourt Robert, "An Economical Custom-Built Drone for Assessing Whale Health," Frontiers in Marine Science, vol. 4, 2017. M. C. Ferguson, R. P. Angliss, A. Kennedy, B. Lynch, A.Willoughby, V. Helker, A. A. Brower, J. T. Clarke, "Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty," Journal of Unmanned Vehicle Systems, vol. 6, 2018. D. Babatunde, S. Pomeroy, P. Lepper, B. Clark, R. Walker, "Autonomous Deployment of Underwater Acoustic Monitoring Devices Using an Unmanned Aerial Vehicle: The Flying Hydrophone," Sensors, vol. 20, 2020. Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, "Object Detection in 20 Years: A Survey," Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, 2023. T. Lindeberg, "Scale Invariant Feature Transform," Scholarpedia, 8 5 2012. N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005, pp. 886-893 vol. 1. M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, B. Scholkopf, "Support vector machines," IEEE Intelligent Systems and their Applications, pp. 18-28, 1998. P. Viola, M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, pp. I-I, 2001. R. Girshick, J. Donahue, T. Darrell, J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 580-587, 6 2014. R. Girshick, "Proceedings of the IEEE International Conference on Computer Vision (ICCV)," Fast R-CNN, pp. 1440-1448, 12 2015. S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," Proc. Adv. Neural Inf. Process. Syst., pp. 91-99, 2015. J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: Unified real-time object detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 779-788, 6 2016. J. Redmon, A. Farhadi, "YOLO9000: Better, Faster, Stronger," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),, pp. 7263-7271, 2017. J. Redmon, A. Farhadi, "YOLOv3: An incremental improvement," arXiv:1804.02767, 2018. A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, "YOLOv4: Optimal speed and accuracy of object detection," arXiv:2004.10934, 2020. G. Joche, "YOLOv5 by Ultralytics.," ultralytics, 2020. [Online]. Available: https://github.com/ultralytics/yolov5. C. Li, L. Lu, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. -Y. Zhou, X. -M. Xu, X. -G. Chu, X. -M. Wei, "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications," arXiv:2209.02976, 2022. C. -Y. Wang, A. Bochkovskiy, H. -Y. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," arXiv:2207.02696, 2022. G. Jocher, A. Chaurasia, J. Qiu, "YOLOv8 by Ultralytics," ultralytics, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics. W. Liu et al., "SSD: Single Shot MultiBox Detector," in in European conference on computer vision, 2016. 丁建均, 白海豚照片自動切割辨識軟體開發, 海洋野生動物保育研究研討會, 2019. C. Fredrik, R.-D. Laia, M. P. T. and B. Lars, "Noise Levels of Multi-Rotor Unmanned Aerial Vehicles with Implications for Potential Underwater Impacts on Marine Mammals," Frontiers in Marine Science, vol. 3, p. 277, 2016. S. M. V. Parijs, P. J. Corkeron, "Boat traffic affects the acoustic behaviour of Pacific humpback dolphins, Sousa chinensis," Journal of the Marine Biological Association of the United Kingdom, vol. 81, no. 3, pp. 533-538, 2001. M. Oliveira-da-Costa, M. Marmontel, D. S. X. da-Rosa, A. Coelho, S. Wich, F. Mosquera-Guerra, F. Trujillo, "Effectiveness of unmanned aerial vehicles to detect Amazon dolphins," Oryx, vol. 54, no. 5, pp. 696-698, 2020. K. Acevedo-Whitehouse, A. Rocha-Gosselin, D. Gendron, "A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs," Animal Conservation, vol. 13, no. 2, pp. 217-225, 2010. B. Subhan, D. Arafat, P. Santoso, K. Fahlevy, B. Prabowo, M. Taufik, B. Kusumo, D. Koreri Awak, D. Khaerudi, H. Ohoiulun, F. Nasetion, H. Madduppa, "Development of observing dolphin population method using Small Vertical Take-off and Landing (VTOL) Unmanned Aerial System (AUV)," in IOP Conference Series: Earth and Environmental Science, 2019. 黃鈞漢、黃彥婷, 109 年台灣西部沿海白海豚族群監測計畫, 海洋委員會海洋保育署, 2020. X. Xiao, Z. Xiong, Q. Chen, "Construction of Multi-UAV Monitoring and Protection Platform for Chinese White Dolphins," 2022 5th International Conference on Robotics, Control and Automation Engineering (RCAE), pp. 90-94, 2022. D. Au, D. Weihs, "At high speeds dolphins save energy by leaping," Nature, pp. 548-550, 1980. "Learning ArduPilot Introduction," [Online]. Available: https://ardupilot.org/dev/docs/learning-ardupilot-introduction.html. [Accessed 11 2021]. L. Meier, J. Camacho, B. Godbolt, J. Goppert, L. Heng, M. Lizarraga, et al., "MAVlink: micro air vehicle communication protocol," 2009. "SITL Simulator (Software in the Loop)," [Online]. Available: https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html. [Accessed 2021]. "RobotX," 2022. [Online]. Available: https://robotx.org/. K. M. Ting, Confusion Matrix, Encyclopedia of Machine Learning and Data Mining, Boston, MA, Springer US, 2017, pp. 260-260. "COCO - Common Objects in Context," [Online]. Available: https://cocodataset.org/. [Accessed 2023]. "GitHub - heartexlabs/labelImg," [Online]. Available: https://github.com/heartexlabs/labelImg. Z. Zhang, "Flexible camera calibration by viewing a plane from unknown orientations," vol. 1, pp. 666-673, 1999. "Distortion (optics)," [Online]. Available: https://en.wikipedia.org/wiki/Distortion_(optics). [Accessed 6 2023]. "opencv," [Online]. Available: https://opencv.org/. [Accessed 6 2023]. K. -H. Ang, G. Chong, Y. Li, "PID control system analysis, design, and technology," IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 559-576, 2005. 陳琪芳、林圻鴻、胡惟鈞, 雲林沿海中華白海豚研究, 2022. "Google Earth," [Online]. Available: https://earth.google.com/web/search/%e6%96%b0%e5%8c%97%e5%b8%82%e5%9c%9f%e5%9f%8e%e5%8d%80%e5%aa%bd%e7%a5%96%e7%94%b0%e6%a3%92%e7%90%83%e5%a0%b4/@24.96372438,121.41259326,15.72964567a,203.68592523d,35y,312.19389137h,0t,0r/data=CigiJgokCSKyPeTm8zhAERzYum4m. [Accessed 06 2023]. J. Y. Wang, K. N. Riehl, M. N. Klein, S. Javdan, J. M. Hoffman, S. Z. Dungan, L. E. Dares, C. Araújo-Wang, "Biology and Conservation of the Taiwanese Humpback Dolphin, Sousa chinensis taiwanensis. Advances in Marine Biology," Advances in Marine Biology, 2015. "QGroundControl," [Online]. Available: http://qgroundcontrol.com/. [Accessed 2023]. T. -Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollar, C. L. Zitnic, Microsoft COCO: Common Objects in Context, CoRR, 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89937 | - |
| dc.description.abstract | 近年政府積極發展離岸風電,風場位址緊鄰中華白海豚棲息地,施工時的打樁噪音可能對仰賴聽覺的海洋哺乳類造成危害。如何監測及掌握其活動習性成為了復育中華白海豚的關鍵之一。
本研究的目標為開發無人機鯨豚監測系統,該系統能夠按照規劃的搜尋區域自主進行鯨豚搜尋任務,結合深度學習的方法即時偵測影像中的目標,並且利用本文提出的鯨豚追蹤演算法進行鯨豚追蹤。 本研究使用臺灣大學鯨豚實驗室提供的2018年中華白海豚資料庫來訓練YOLOv8m模型,並以2022年真實中華白海豚目擊案例做為擬真的實海域實驗,以測試整個鯨豚偵測系統運作,並為未來在實際海域進行實驗準備。 在Gazebo模擬器中,設定虛擬中華白海豚以不同速度、姿態和路徑移動。虛擬無人機於海面上15公尺高,能夠穩定追蹤10節以下移動速度的中華百海豚。並在戶外實驗中測試真實無人機的追蹤性能,無人機能夠穩定追蹤移動速度3.5節以下移動速度的目標。 | zh_TW |
| dc.description.abstract | In recent years, the government has been actively developing offshore wind power, with wind farms located near the habitat of the Chinese white dolphins. The pile driving noise during construction may pose a threat to marine mammals that rely on their sense of hearing. How to monitor and understand their behavioral patterns has become a key aspect of rehabilitating the Chinese white dolphins.
The goal of this study is to develop an unmanned aerial vehicle (UAV) dolphin monitoring system. This system is designed to autonomously conduct dolphin search missions within predetermined search areas. It employs deep learning methods to detect targets in real-time from captured images and utilizes the proposed dolphin tracking algorithm to track the dolphins' movements. For this research, the YOLOv8m model was trained using the Chinese white dolphin database provided by the National Taiwan University's Dolphin Lab for the year 2018. Additionally, real Chinese white dolphin sighting cases from 2022 were used for realistic sea-based experiments, testing the functionality of the entire dolphin detection system and preparing for future experiments in actual marine environments. In the Gazebo simulator, virtual Chinese white dolphins were set to move at varying speeds, postures, and paths. The virtual UAV, positioned 15 meters above the sea surface, was capable of effectively tracking Chinese white dolphins moving at speeds below 10 knots. Outdoor experiments were also conducted to test the tracking performance of real UAVs, demonstrating their ability to stably track targets moving at speeds below 3.5 knots. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:45:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:45:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 鯨豚監測方法 3 1.2.2 物件偵測 4 1.2.3 中華白海豚的影像偵測 5 1.2.4 無人機監測對鯨豚的干擾 6 1.2.5 無人機對鯨豚監測的應用 6 1.3 論文架構 8 1.4 論文貢獻 8 第二章 平台設計 9 2.1 無人機系統 9 2.1.1 ArduPilot 9 2.1.2 DroneKit 9 2.1.3 MAVLink 10 2.2 八軸多旋翼無人機 11 2.2.1 硬體說明 12 2.2.2 硬體架構 14 2.3 虛擬無人機模擬 15 2.3.1 SITL和虛擬無人機 16 2.3.2 Gazebo模擬器 18 2.3.3 模擬環境 18 第三章 軟體設計與研究方法 20 3.1 鯨豚搜尋系統 22 3.2 鯨豚偵測系統 23 3.2.1 物件偵測模型評估 23 3.2.2 模型選擇 26 3.2.3 模型訓練 28 3.2.4 相機影像校正 30 3.3 鯨豚追蹤系統 33 第四章 智能無人機鯨豚監測系統模擬 38 4.1 中華白海豚偵測實驗 39 4.2 白海豚模擬追蹤實驗 41 4.3 新虎尾溪口目擊事件模擬 44 4.3.1 模擬環境配置 45 4.3.2 模擬實驗規劃 45 4.3.3 模擬實驗結果 46 第五章 戶外實驗 47 5.1 虎鯨氣球偵測實驗 48 5.2 鯨豚搜尋路徑實驗 51 5.3 虎鯨氣球追蹤實驗 57 第六章 結論與未來發展建議 61 6.1 結論 61 6.2 未來發展建議 62 附錄 A 模擬環境中鯨豚追蹤結果 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鯨豚監測 | zh_TW |
| dc.subject | 無人機 | zh_TW |
| dc.subject | 即時物件偵測 | zh_TW |
| dc.subject | Real-time Object Detection | en |
| dc.subject | Cetacean Monitoring | en |
| dc.subject | Unmanned Aerial Vehicles | en |
| dc.title | 智能無人機之鯨豚監測技術研究 | zh_TW |
| dc.title | Study of Cetacean Monitoring Techniques Utilizing Autonomous Unmanned Aerial Vehicles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周蓮香;胡惟鈞;彭巧明;黃維信 | zh_TW |
| dc.contributor.oralexamcommittee | Lien-Siang Chou;Wei-Chun Hu;Chiao-Ming Peng;Wei-Shien Hwang | en |
| dc.subject.keyword | 鯨豚監測,無人機,即時物件偵測, | zh_TW |
| dc.subject.keyword | Cetacean Monitoring,Unmanned Aerial Vehicles,Real-time Object Detection, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202304049 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
