Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89934
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松zh_TW
dc.contributor.advisorFrank Yeong-Sung Linen
dc.contributor.author葉祉均zh_TW
dc.contributor.authorChih-Chun Yehen
dc.date.accessioned2023-09-22T16:44:22Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationR. Devi and P. Sujatha, “A study on biometric and multi-modal biometric system modules, applications, techniques and challenges,” in 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 267–271, 2017.
S. K. Singla, M. Singh, and N. Kanwal, “Biometric system - challenges and future trends,” in 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 647–651, 2021.
M. S. Hossain and V. V. Phoha, “Enhancing performance and user convenience of multi-biometric verification systems,” Pattern Analysis and Applications, vol. 24, pp. 1569 – 1582, 2021.
D. Brown and K. Bradshaw, “A multi-biometric feature-fusion framework for improved uni-modal and multi-modal human identification,” in 2016 IEEE Symposium on Technologies for Homeland Security (HST), pp. 1–6, 2016.
T. Edwards and M. S. Hossain, “Effectiveness of deep learning on serial fusion based biometric systems,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 1, pp. 28–41, 2021.
G. L. Marcialis, P. Mastinu, and F. Roli, “Serial fusion of multi-modal biometric systems,” in 2010 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, pp. 1–7, 2010.
M. S. Hossain, J. Chen, and K. Rahman, “An enhanced architecture for serial fusion based multi-biometric verification system,” in 2018 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6, 2018.
L.-M. Zheng, “A serial multi-modal biometrics authentication system based on double threshold decisions,” 2016.
G. L. Marcialis, F. Roli, and L. Didaci, “Personal identity verification by serial fusion of fingerprint and face matchers,” Pattern Recognition, vol. 42, no. 11, pp. 2807–2817, 2009.
A. Wald, Sequential analysis. Courier Corporation, 2004.
L. Allano, B. Dorizzi, and S. Garcia-Salicetti, “Tuning cost and performance in multi-biometric systems: A novel and consistent view of fusion strategies based on the sequential probability ratio test (sprt),” Pattern Recognition Letters, vol. 31, no. 9, pp. 884–890, 2010.
K. Takahashi, M. Mimura, Y. Isobe, and Y. Seto, “A secure and user-friendly multimodal biometric system,” in Biometric Technology for Human Identification (A. K. Jain and N. K. Ratha, eds.), vol. 5404 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 12–19, Aug. 2004.
E. L. Lehmann, J. P. Romano, and G. Casella, Testing statistical hypotheses, vol. 3. Springer, 2005.
J. Neyman and E. S. Pearson, “Ix. on the problem of the most efficient tests of statistical hypotheses,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 231, no. 694-706, pp. 289–337, 1933.
M. S. Hossain, K. S. Balagani, and V. V. Phoha, “On controlling genuine reject rate in multi-stage biometric verification,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 194–199, 2013.
M. S. Hossain, K. S. Balagani, and V. V. Phoha, “Effectiveness of symmetric rejection for a secure and user convenient multistage biometric system,” Pattern Analysis and Applications, vol. 24, pp. 49–60, 2020.
M. S. Hossain, “On finding appropriate reject region in serial fusion based biometric verification,” in 2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), pp. 102–108, 2016.
M. Stanojević, I. Milenković, D. Starčević, and B. Stanojević, “Optimization of thresholds in serial multimodal biometric systems,” in 2016 6th International Conference on Computers Communications and Control (ICCCC), pp. 140–146, 2016.
M. L. Fisher, “The lagrangian relaxation method for solving integer programming problems,” Manag. Sci., vol. 50, pp. 1861–1871, 2004.
A. M. Geoffrion, Lagrangean relaxation for integer programming, pp. 82–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1974.
M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.
M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees: Part ii,” Mathematical Programming, vol. 1, pp. 6–25, 1971.
M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient optimization,” Mathematical Programming, vol. 6, pp. 62–88, 1974.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89934-
dc.description.abstract身份驗證在資訊安全中扮演著重要的角色,通過身份驗證,系統能夠在授予訪問權限之前確認用戶的身份。身份驗證從傳統的密碼驗證轉為生物特徵驗證,從單模態走向多模態,研究人員通過不同的方法努力提高身份驗證系統的準確性。
序列式多因子生物認證系統將多種生物特徵串聯融合,並在每個階段驗證一個生物特徵。序列式融合允許用戶提供部分生物識別模態,使其更為方便使用。此外,大部分真實用戶在第一階段即可通過驗證,而入侵者則需通過所有生物識別關卡。如此一來,辨識系統的效能與安全性得以實現。
過去的研究中,FAR × FRR = Constant 作為上界曲線大大地高估了FAR 與 FRR ,使序列式多因子生物認證系統的表現被低估。本研究提供一種有效的方法來尋找貼合資料的上界曲線,我們將問題轉為數學公式,並使用拉格朗日鬆弛方法對其進行求解,透過實驗證明更好地擬合曲線使系統產生更準確的結果,解決低估問題。此外,我們將上界曲線設定為正多項式,可以將其帶入 GP 或其他方法中。
研究結果顯示,透過拉格朗日鬆弛法,可以快速地找到具有最小誤差平方和的上界曲線,並大幅提升系統的表現。而有效的資料篩選,可以使上界曲線更貼合重要的資料點,獲得更優的系統表現。
zh_TW
dc.description.abstractAuthentication plays an important role in information security. With authentication, the system is able to confirm the user's identity before granting the access privileges. Authentication has changed from traditional password verification to biometric authentication, and from uni-modal to multi-modal. Researchers have worked hard to improve the accuracy of authentication systems through different methods.
A serial fusion multimodal biometric authentication system
fuses the multi-biometric in series and verifies one biometric at each stage. By allowing users to input a subset of biometric modalities, serial fusion are more user-friendly. In addition, most genuine users can be verified in the first stage, while imposters need to pass all biometric verifications. In this way, the efficiency and security of the identification system are realized.
In the preliminary work, FAR × FRR = Constant was used as the upper bounding curve which greatly overestimate FAR and FRR, so that the performance of the serial fusion multimodal biometric authentication system was underestimated. This study provides an effective method to find the upper bounding curve that fits the data. The problem is turned into a mathematical formula and solved by the Lagrangian relaxation method. Through experiments, it is proved that better fitting curves make the system produces more accurate results and addresses underestimation. In addition, the upper bounding curve is set as a posynomial, which can be brought into GP or other methods.
The research shows that the upper bounding curve with the minimum sum of squared errors can be quickly found through the Lagrangian Relaxation method, and the performance of the system can be greatly improved. Effective data screening can make the upper bounding curve more closely fit important data points and obtain better system performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:44:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:44:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Serial Fusion Based Biometric System 2
1.3 Preliminary Result 3
1.4 Motivation 4
1.5 Thesis Organization 5
Chapter 2 Literature Review 6
2.1 Serial Fusion Biometric System Framework 6
2.2 Double-threshold Decision Scheme 8
2.2.1 Sequential Probability Ratio Test 8
2.2.2 Symmetric Rejection Method 9
2.2.3 Marcialis method 10
2.3 Summary 11
Chapter 3 Problem Formulation 12
3.1 Problem Description 12
3.2 Mathematical Formulation 13
3.2.1 Primal Problem I 14
3.2.1.1 Objective Function 14
3.2.1.2 Constraints 15
3.2.2 Primal Problem II 16
3.2.2.1 Objective Function 16
3.2.2.2 Constraints 17
Chapter 4 Solution Approach 18
4.1 The Lagrangian Relaxation Method 18
4.2 Primal Problem I 20
4.2.1 The Lagrangian Relaxation Problem 20
4.2.2 Decomposition and Solving Subproblems 21
4.2.2.1 Subproblem 1-1 (related to decision variable yˆ) 21
4.2.2.2 Subproblem 1-2 (related to decision variable α, β) 23
4.3 Primal Problem II 26
4.3.1 The Lagrangian Relaxation Problem 26
4.3.2 Decomposition and Solving Subproblems 26
4.3.2.1 Subproblem 2-1 (related to decision variable S) 27
4.3.2.2 Subproblem 2-2 (related to decision variable α, β) 28
4.4 The Dual Problem 29
4.4.1 The Subgradient Method 30
4.5 Getting Primal Feasible Solution 31
Chapter 5 Experimental Results and Discussion 36
5.1 Experimental Data 36
5.2 The Adjustment Order of the Sub-curves α, β 37
5.3 Results for Lagrangian Relaxation 39
5.3.1 Primal Problem I 40
5.3.2 Primal Problem II 42
5.3.3 Discussion 50
5.4 Improvement to Preliminary Work 50
5.5 The Upper Bounding Curve of Partial Data 55
Chapter 6 Conclusions 59
References 61
-
dc.language.isoen-
dc.title以拉格朗日鬆弛法最佳化序列式多因子生物驗證系統 FAR 與 FRR 之上界曲線zh_TW
dc.titleThe Lagrangian Relaxation Method for Optimizing The Upper Bounding Curve of FAR and FRR of A Serial Multimodal Biometric Authentication Systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾順平;呂俊賢zh_TW
dc.contributor.oralexamcommitteeShun-Ping Chung;Chun-Hsien Luen
dc.subject.keyword拉格朗日鬆弛,正多項式上界曲線,zh_TW
dc.subject.keywordLagrangian relaxation,Posynomial upper bounding curve,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202303864-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
2.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved