Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89931
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴文崧zh_TW
dc.contributor.advisorWen-sung Laien
dc.contributor.author任祖儀zh_TW
dc.contributor.authorTsu-Yi Jenen
dc.date.accessioned2023-09-22T16:43:39Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationAhn, W. Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Comput Psychiatr, 1, 24-57. doi:10.1162/CPSY_a_00002
Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci, 14(10), 1338-1344. doi:10.1038/nn.2921
Ashwood, Z. C., Roy, N. A., Stone, I. R., International Brain, L., Urai, A. E., Churchland, A. K., . . . Pillow, J. W. (2022). Mice alternate between discrete strategies during perceptual decision-making. Nat Neurosci, 25(2), 201-212. doi:10.1038/s41593-021-01007-z
Balconi, M., Angioletti, L., Siri, C., Meucci, N., & Pezzoli, G. (2018). Gambling behavior in Parkinson's Disease: Impulsivity, reward mechanism and cortical brain oscillations. Psychiatry Res, 270, 974-980. doi:10.1016/j.psychres.2018.03.041
Balleine, B. W., & O'Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48-69. doi:10.1038/npp.2009.131
Braun, S., & Hauber, W. (2011). The dorsomedial striatum mediates flexible choice behavior in spatial tasks. Behav Brain Res, 220(2), 288-293. doi:10.1016/j.bbr.2011.02.008
Briese, T., Hornig, M., & Lipkin, W. I. (1999). Bornavirus immunopathogenesis in rodents: models for human neurological diseases. J Neurovirol, 5(6), 604-612. doi:10.3109/13550289909021289
Brolsma, S. C. A., Vrijsen, J. N., Vassena, E., Rostami Kandroodi, M., Bergman, M. A., van Eijndhoven, P. F., . . . Cools, R. (2022). Challenging the negative learning bias hypothesis of depression: reversal learning in a naturalistic psychiatric sample. Psychol Med, 52(2), 303-313. doi:10.1017/S0033291720001956
Burton, A. C., Nakamura, K., & Roesch, M. R. (2015). From ventral-medial to dorsal-lateral striatum: neural correlates of reward-guided decision-making. Neurobiol Learn Mem, 117, 51-59. doi:10.1016/j.nlm.2014.05.003
Capuzzo, G., & Floresco, S. B. (2020). Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking. J Neurosci, 40(24), 4773-4787. doi:10.1523/JNEUROSCI.0414-20.2020
Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal theta overrides pavlovian learning biases. J Neurosci, 33(19), 8541-8548. doi:10.1523/JNEUROSCI.5754-12.2013
Charan, J., & Kantharia, N. D. (2013). How to calculate sample size in animal studies? J Pharmacol Pharmacother, 4(4), 303-306. doi:10.4103/0976-500X.119726
Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition: where next? Trends Cogn Sci, 10(7), 292-293. doi:10.1016/j.tics.2006.05.008
Chen, Y. C., Chen, Y. W., Hsu, Y. F., Chang, W. T., Hsiao, C. K., Min, M. Y., & Lai, W. S. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes Brain Behav, 11(2), 157-169. doi:10.1111/j.1601-183X.2011.00759.x
Chung, L. (2015). A Brief Introduction to the Transduction of Neural Activity into Fos Signal. Dev Reprod, 19(2), 61-67. doi:10.12717/DR.2015.19.2.061
Colautti, L., Iannello, P., Silveri, M. C., & Antonietti, A. (2021). Decision making in Parkinson's disease: An analysis of the studies using the Iowa Gambling Task. Eur J Neurosci, 54(10), 7513-7549. doi:10.1111/ejn.15497
Cruz-Mendoza, F., Jauregui-Huerta, F., Aguilar-Delgadillo, A., Garcia-Estrada, J., & Luquin, S. (2022). Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci, 12(6). doi:10.3390/brainsci12060687
Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879. doi:10.1038/nature04766
de Kloet, S. F., Bruinsma, B., Terra, H., Heistek, T. S., Passchier, E. M. J., van den Berg, A. R., . . . Mansvelder, H. D. (2021). Bi-directional regulation of cognitive control by distinct prefrontal cortical output neurons to thalamus and striatum. Nat Commun, 12(1), 1994. doi:10.1038/s41467-021-22260-7
den Ouden, H. E., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., . . . Cools, R. (2013). Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80(4), 1090-1100. doi:10.1016/j.neuron.2013.08.030
DeNardo, L. A., Liu, C. D., Allen, W. E., Adams, E. L., Friedmann, D., Fu, L., . . . Luo, L. (2019). Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci, 22(3), 460-469. doi:10.1038/s41593-018-0318-7
Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M. (2016). Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(5), 460-473. doi:10.1016/j.bpsc.2016.05.005
Dymond, S., Lawrence, N. S., & Yuen, K. S. (2013). Neurocognitive mechanisms of impaired decision making in pathological gambling. Front Psychiatry, 4, 12. doi:10.3389/fpsyt.2013.00012
Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. doi:10.1016/j.neuron.2012.12.002
Fear, C. F., & Healy, D. (1997). Probabilistic reasoning in obsessive-compulsive and delusional disorders. Psychol Med, 27(1), 199-208. doi:10.1017/s0033291796004175
Festing, M. F. (2006). Design and statistical methods in studies using animal models of development. ILAR J, 47(1), 5-14. doi:10.1093/ilar.47.1.5
Festing, M. F., & Altman, D. G. (2002). Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J, 43(4), 244-258. doi:10.1093/ilar.43.4.244
Gourley, S. L., Lee, A. S., Howell, J. L., Pittenger, C., & Taylor, J. R. (2010). Dissociable regulation of instrumental action within mouse prefrontal cortex. Eur J Neurosci, 32(10), 1726-1734. doi:10.1111/j.1460-9568.2010.07438.x
Gremel, C. M., & Costa, R. M. (2013). Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun, 4, 2264. doi:10.1038/ncomms3264
Hammack, R. J., Fischer, V. E., Andrade, M. A., & Toney, G. M. (2023). Anterior basolateral amygdala neurons comprise a remote fear memory engram. Front Neural Circuits, 17, 1167825. doi:10.3389/fncir.2023.1167825
Heerey, E. A., Bell-Warren, K. R., & Gold, J. M. (2008). Decision-making impairments in the context of intact reward sensitivity in schizophrenia. Biol Psychiatry, 64(1), 62-69. doi:10.1016/j.biopsych.2008.02.015
Herdegen, T., & Leah, J. D. (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev, 28(3), 370-490. doi:10.1016/s0165-0173(98)00018-6
Ito, M., & Doya, K. (2015). Distinct neural representation in the dorsolateral, dorsomedial, and ventral parts of the striatum during fixed- and free-choice tasks. J Neurosci, 35(8), 3499-3514. doi:10.1523/JNEUROSCI.1962-14.2015
Jiang, D., Zhang, D., Chen, Y., He, Z., Gao, Q., Gu, R., & Xu, P. (2018). Trait anxiety and probabilistic learning: Behavioral and electrophysiological findings. Biol Psychol, 132, 17-26. doi:10.1016/j.biopsycho.2017.10.010
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning A Survey. Journal of Articial Intelligence Research, 237-285. doi:https://doi.org/10.1613/jair.301
Koutlas, I., Linders, L. E., van der Starre, S. E., Wolterink-Donselaar, I. G., Adan, R. A. H., & Meye, F. J. (2022). Characterizing and TRAPing a Social Stress-Activated Neuronal Ensemble in the Ventral Tegmental Area. Front Behav Neurosci, 16, 936087. doi:10.3389/fnbeh.2022.936087
Kunisato, Y., Okamoto, Y., Ueda, K., Onoda, K., Okada, G., Yoshimura, S., . . . Yamawaki, S. (2012). Effects of depression on reward-based decision making and variability of action in probabilistic learning. J Behav Ther Exp Psychiatry, 43(4), 1088-1094. doi:10.1016/j.jbtep.2012.05.007
Leake, J., Zinn, R., Corbit, L. H., Fanselow, M. S., & Vissel, B. (2021). Engram Size Varies with Learning and Reflects Memory Content and Precision. J Neurosci, 41(18), 4120-4130. doi:10.1523/JNEUROSCI.2786-20.2021
Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A., & Daw, N. D. (2011). Differential roles of human striatum and amygdala in associative learning. Nat Neurosci, 14(10), 1250-1252. doi:10.1038/nn.2904
MacKillop, J., Celio, M. A., Mastroleo, N. R., Kahler, C. W., Operario, D., Colby, S. M., . . . Monti, P. M. (2015). Behavioral economic decision making and alcohol-related sexual risk behavior. AIDS Behav, 19(3), 450-458. doi:10.1007/s10461-014-0909-6
Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., . . . Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. Neural Netw, 152, 267-275. doi:10.1016/j.neunet.2022.03.037
Mazurkiewicz, M., Kambham, A., Pace, B., Skwarzynska, D., Wagley, P., & Burnsed, J. (2022). Neuronal activity mapping during exploration of a novel environment. Brain Res, 1776, 147748. doi:10.1016/j.brainres.2021.147748
Metha, J. A., Brian, M. L., Oberrauch, S., Barnes, S. A., Featherby, T. J., Bossaerts, P., . . . Jacobson, L. H. (2019). Separating Probability and Reversal Learning in a Novel Probabilistic Reversal Learning Task for Mice. Front Behav Neurosci, 13, 270. doi:10.3389/fnbeh.2019.00270
Minatohara, K., Akiyoshi, M., & Okuno, H. (2015). Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace. Front Mol Neurosci, 8, 78. doi:10.3389/fnmol.2015.00078
Neves, M., Vieira, M., & Neto, P. (2021). A study on a Q-Learning algorithm application to a manufacturing assembly problem. Journal of Manufacturing Systems, 59, 426-440. doi:10.1016/j.jmsy.2021.02.014
Ostlund, S. B., & Balleine, B. W. (2005). Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J Neurosci, 25(34), 7763-7770. doi:10.1523/JNEUROSCI.1921-05.2005
Perrin-Terrin, A. S., Jeton, F., Pichon, A., Frugiere, A., Richalet, J. P., Bodineau, L., & Voituron, N. (2016). The c-FOS Protein Immunohistological Detection: A Useful Tool As a Marker of Central Pathways Involved in Specific Physiological Responses In Vivo and Ex Vivo. J Vis Exp(110). doi:10.3791/53613
Peterson, D. A., Elliott, C., Song, D. D., Makeig, S., Sejnowski, T. J., & Poizner, H. (2009). Probabilistic reversal learning is impaired in Parkinson's disease. Neuroscience, 163(4), 1092-1101. doi:10.1016/j.neuroscience.2009.07.033
Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: knowns and unknowns. Nat Neurosci, 16(9), 1170-1178. doi:10.1038/nn.3495
Ptak, R., Gutbrod, K., Perrig, W., & Schnider, A. (2001). Probabilistic contingency learning with limbic or prefrontal damage. Behav Neurosci, 115(5), 993-1001. doi:10.1037//0735-7044.115.5.993
Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci, 1121, 355-375. doi:10.1196/annals.1401.013
Ragozzino, M. E., Jih, J., & Tzavos, A. (2002). Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors. Brain Res, 953(1-2), 205-214. doi:10.1016/s0006-8993(02)03287-0
Ragozzino, M. E., Ragozzino, K. E., Mizumori, S. J., & Kesner, R. P. (2002). Role of the dorsomedial striatum in behavioral flexibility for response and visual cue discrimination learning. Behav Neurosci, 116(1), 105-115. doi:10.1037//0735-7044.116.1.105
Riga, D., Matos, M. R., Glas, A., Smit, A. B., Spijker, S., & Van den Oever, M. C. (2014). Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci, 8, 230. doi:10.3389/fnsys.2014.00230
Rost, B. R., Wietek, J., Yizhar, O., & Schmitz, D. (2022). Optogenetics at the presynapse. Nat Neurosci, 25(8), 984-998. doi:10.1038/s41593-022-01113-6
Rutledge, R. B., Lazzaro, S. C., Lau, B., Myers, C. E., Gluck, M. A., & Glimcher, P. W. (2009). Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task. J Neurosci, 29(48), 15104-15114. doi:10.1523/JNEUROSCI.3524-09.2009
Saperia, S., Da Silva, S., Siddiqui, I., Agid, O., Daskalakis, Z. J., Ravindran, A., . . . Foussias, G. (2019). Reward-driven decision-making impairments in schizophrenia. Schizophr Res, 206, 277-283. doi:10.1016/j.schres.2018.11.004
Schmitt, L. M., Sweeney, J. A., Erickson, C. A., & Shaffer, R. (2022). Brief Report: Feasibility of the Probabilistic Reversal Learning Task as an Outcome Measure in an Intervention Trial for Individuals with Autism Spectrum Disorder. J Autism Dev Disord, 52(9), 4191-4199. doi:10.1007/s10803-021-05288-y
Serrano, M., Tripodi, M., & Caroni, P. (2022). Strategy updating mediated by specific retrosplenial-parafascicular-basal ganglia networks. Curr Biol, 32(16), 3477-3492 e3475. doi:10.1016/j.cub.2022.06.033
Singh, J. (2012). The national centre for the replacement, refinement, and reduction of animals in research. J Pharmacol Pharmacother, 3(1), 87-89.
Solomon, M., Frank, M. J., Ragland, J. D., Smith, A. C., Niendam, T. A., Lesh, T. A., . . . Carter, C. S. (2015). Feedback-driven trial-by-trial learning in autism spectrum disorders. Am J Psychiatry, 172(2), 173-181. doi:10.1176/appi.ajp.2014.14010036
Solomon, M., Smith, A. C., Frank, M. J., Ly, S., & Carter, C. S. (2011). Probabilistic reinforcement learning in adults with autism spectrum disorders. Autism Res, 4(2), 109-120. doi:10.1002/aur.177
Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., & Schoenbaum, G. (2012). Reward prediction error signaling in posterior dorsomedial striatum is action specific. J Neurosci, 32(30), 10296-10305. doi:10.1523/JNEUROSCI.0832-12.2012
Starkweather, C. K., Gershman, S. J., & Uchida, N. (2018). The Medial Prefrontal Cortex Shapes Dopamine Reward Prediction Errors under State Uncertainty. Neuron, 98(3), 616-629 e616. doi:10.1016/j.neuron.2018.03.036
Sternson, S. M., & Roth, B. L. (2014). Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci, 37, 387-407. doi:10.1146/annurev-neuro-071013-014048
Stoltenborg, I., Peris-Sampedro, F., Schele, E., Le May, M. V., Adan, R. A. H., & Dickson, S. L. (2022). TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci, 23(1). doi:10.3390/ijms23010559
Sul, J. H., Kim, H., Huh, N., Lee, D., & Jung, M. W. (2010). Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron, 66(3), 449-460. doi:10.1016/j.neuron.2010.03.033
Swainson, R., Rogers, R. D., Sahakian, B. J., Summers, B. A., Polkey, C. E., & Robbins, T. W. (2000). Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia, 38(5), 596-612. doi:10.1016/s0028-3932(99)00103-7
Terra, H., Bruinsma, B., de Kloet, S. F., van der Roest, M., Pattij, T., & Mansvelder, H. D. (2020). Prefrontal Cortical Projection Neurons Targeting Dorsomedial Striatum Control Behavioral Inhibition. Curr Biol, 30(21), 4188-4200 e4185. doi:10.1016/j.cub.2020.08.031
Tezcan, D., Tumkaya, S., & Bora, E. (2017). Reversal learning in patients with obsessive-compulsive disorder (OCD) and their unaffected relatives: Is orbitofrontal dysfunction an endophenotype of OCD? Psychiatry Res, 252, 231-233. doi:10.1016/j.psychres.2017.03.001
Vandamme, T. F. (2014). Use of rodents as models of human diseases. J Pharm Bioallied Sci, 6(1), 2-9. doi:10.4103/0975-7406.124301
Vassena, E., Krebs, R. M., Silvetti, M., Fias, W., & Verguts, T. (2014). Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice. Neuropsychologia, 59, 112-123. doi:10.1016/j.neuropsychologia.2014.04.019
Vogt, N. (2015). Chemogenetic manipulation of neurons. Nat Methods, 12(7), 603. doi:10.1038/nmeth.3471
Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res, 93(1-3), 296-303. doi:10.1016/j.schres.2007.03.010
Warren, B. L., Mendoza, M. P., Cruz, F. C., Leao, R. M., Caprioli, D., Rubio, F. J., . . . Hope, B. T. (2016). Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories. J Neurosci, 36(25), 6691-6703. doi:10.1523/JNEUROSCI.0140-16.2016
Weiler, J. A., Bellebaum, C., Brune, M., Juckel, G., & Daum, I. (2009). Impairment of probabilistic reward-based learning in schizophrenia. Neuropsychology, 23(5), 571-580. doi:10.1037/a0016166
Yang, L., & Masmanidis, S. C. (2020). Differential encoding of action selection by orbitofrontal and striatal population dynamics. J Neurophysiol, 124(2), 634-644. doi:10.1152/jn.00316.2020
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci, 19(1), 181-189. doi:10.1111/j.1460-9568.2004.03095.x
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2006). Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav Brain Res, 166(2), 189-196. doi:10.1016/j.bbr.2005.07.012
Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci, 22(2), 513-523. doi:10.1111/j.1460-9568.2005.04218.x
You 游文愷, W. K., & Mysore, S. P. (2022). Dynamics of Visual Perceptual Decision-Making in Freely Behaving Mice. eNeuro, 9(2). doi:10.1523/ENEURO.0161-21.2022
Young, M. K., Conn, K.-A., Das, J., Zou, S., Alexander, S., Burne, T. H. J., & Kesby, J. P. (2022). Activity in the Dorsomedial Striatum Underlies Serial Reversal Learning Performance Under Probabilistic Uncertainty. Biological Psychiatry Global Open Science. doi:10.1016/j.bpsgos.2022.08.005
Zetsche, U., Rief, W., Westermann, S., & Exner, C. (2015). Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD. Cogn Emot, 29(2), 360-371. doi:10.1080/02699931.2014.911144
Zhukovsky, P., Puaud, M., Jupp, B., Sala-Bayo, J., Alsio, J., Xia, J., . . . Dalley, J. W. (2019). Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology, 44(13), 2163-2173. doi:10.1038/s41386-019-0381-0
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89931-
dc.description.abstract機率學習是透過嘗試和錯誤學會機率概念的認知學習過程,在這個過程中個體需要透過在一系列選項中選擇其一,並在獲得獎勵或懲罰後,不斷重複前述過程,以學習蘊含在選項背後的機率概念。這樣的行為在現實生活中是相當必要的。目前已有研究指出一些精神疾病的患者在這樣的學習歷程中,有和正常個體不同的行為模式,因此去研究大腦各部位如何參與形成這樣的機率學習認知歷程就是一個相當重要的課題。因為在人類身上能進行的實驗操弄有限,難以了解這樣複雜的行為背後的因果關係,因此本實驗利用小鼠作為模型來進行一連串的研究。
在這篇研究中,小鼠將在一個我們自製的行為裝置中完成機率學習,這個金屬行為裝置由matlab code 控制arduino 使小鼠能夠在裝置內完成半自動化的學習。機率學習的過程主要分為三大階段:行為塑造階段(shaping phase)、第一次機率學習(acquisition)、第二次機率學習(testing phase)。
在機率學習的過程當中,小鼠在選擇左右兩側的選項後會有不同的機率得到獎勵,分別為百分之二十或八十。在第一部分的實驗中我們將在此機率學習的過程中,利用TRAP2小鼠來觀察其在前額葉皮層(medial prefrontal cortex) 、背內側紋狀體(dorsal medial striatum)、背外側紋狀體(dorsal lateral striatum) 學習第一天以及最後一天的神經活動動態變化。第一部分的實驗結果顯示,在機率學習的初始階段,內側眼匡皮質(medial orbitofrontal cortex) 以及背內側紋狀體的活躍程度較高,在學習歷程的最後一天這兩個腦區的活動程度皆較低;相對而言,前邊緣皮質(prelimbic cortex)和背外側紋狀體在整個機率學習過程中保持相同的活躍程度。這樣的發現暗示著內側眼匡皮質(medial orbitofrontal cortex) 以及背內側紋狀體早期活躍與否可能是此機率學習的關鍵。
為了近一步釐清找到的特定腦區在此作業學習歷程中不同階段的重要性,我們透過化學遺傳學抑制進行後續操弄。由於已經有相關研究指出前額葉皮質有解剖及功能上的投射至背內側紋狀體,因此在第二部分的實驗中我們選擇對下游的背內側紋狀體進行化學遺傳學的抑制操弄,看看在學習的早期及晚期該腦區的活躍程度變化是否有功能上的意義。在第二部分的實驗中,共有四個組別:全期抑制組(all-time inhibition group)、早期抑制組(early-inhibition group)、晚期抑制組(late-inhibition group)和控制組。分別抑制整個機率學習歷程,或者只抑制早期或晚期的學習歷程,控制組則在整個學習階段都沒有被抑制。根據第二部分的實驗結果,全期抑制組和早期抑制組的表現沒有差異且相比於晚期抑制以及控制組差,這說明了背內側紋狀體在機率學習的早期更為重要且可能負責在該時間段將當關鍵的功能。我們利用reward-noreward 模型來分析小鼠的行為後發現,早期抑制和晚期抑制的組別存在一個參數consistency的統計差異。
本研究的發現顯示,背內側紋狀體在機率學習的早期更為重要,且在早期抑制背內側紋狀體會導致較差的學習結果,而這樣的結果很可能是影響了reward-noreward model中的consistency所導致。根據此篇研究,使用不同的定義來切割機率學習的不同階段,或許是釐清機率學習這樣複雜行為的一個研究方法。
zh_TW
dc.description.abstractProbabilistic learning is the process of acquiring knowledge through trial and error to choose the optimal alternative from a set of alternatives with varying probabilities of receiving a reward or punishment. This concept has been applied to Neuroscience, Cognitive Psychology, and Behavioral Economics to investigate the neural and computational mechanisms underlying learning and decision-making. Understanding how people learn from probabilistic feedback has implications for improving decision-making processes in real-world situations. Probabilistic learning tasks are essential for adjusting to daily life, but individuals with cognitive abnormalities demonstrate distinct patterns in these tasks in comparison to healthy controls. Compared to animal studies, human research has many limitations. The mouse is a good model organism in science, which offers advantages for studying choice behavior, such as genetic tractability, small size, naturalistic behaviors, and insights into neural mechanisms.
In this study, a handmade chamber controlled by MATLAB and Arduino systems was utilized. Three phases comprised the 2-choice probabilistic learning task: the shaping phase, the probabilistic acquisition phase, and the testing phase. In the first experiment, TRAP2 mice were used to examine the dynamics of the following 4 selected brain regions (including the medial orbitofrontal coretexcortex (MO), the prelimbic cortex (PrL), dorsal medial striatum (DMS), and dorsal lateral striatum (DLS) in probabilistic learning based on previous studies. The mice were presented with varying probabilities on the left and right sides to receive a reward. During the acquisition phase, the reward probability was 80% for one choice and 20% for the other side. The mice underwent three blocks of 25 trials each day, and the acquisition criteria is that the overall average accuracy is above 75%. Taking advantage of TRAP2 mice, neurons that were active on the first and last day of acquisition phase were labeled. The results of the first experiment indicated that there were significantly increased neural activities in the MO and DMS on the first day of acquisition phase whereas no significant difference was found on the last day. In contrast, there was no significant difference on either the first or the last day in the PrL and DLS. For further manipulation, we analyzed the choice strategy ratio to determine a time point that divided the acquisition procedure into the early and late phases.
Because previous researches demonstrated that mPFC has direct projection to DMS, we took advantage of chemogenetic to selectively inhibit DMS activity during different time point in the acquisition phase in the second experiment to evaluate the time and functional significance of the DMS. There were 4 groups in Experiment 2. The all-time inhibition group is inhibited chemogenetically throughout the entire acquisition phase, whereas the early-inhibition group and late-inhibition group were only inhibited chemogenetically during the early and late phases, respectively. The DMS activity level of the control group was not inhibited throughout the acquisition. The all-time inhibition and early-inhibition groups required more learning trials to achieve the acquisition criteria than the late-inhibition and control groups. Our result indicated that DMS is important in the early phase of probabilistic acquisition. Besides, we fitted the behavioral data to a reward-no reward model and discovered a statistically significant difference between early- and late-inhibition on a parameter for consistency.
Together, these findings revealed that DMS plays an important role at the beginning of probabilistic acquisition, and that inhibition of DMS in the early phase resulted in a worse acquisition outcome and lower consistency. Accordingly, using different definitions to separate the different stages of probabilistic learning may be a research method to clarify complex behaviors such as probabilistic learning.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:43:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:43:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
Abstract iii
Table of contents vii
List of figures xi
Chapter 1 Introduction 1
1.1 Overview of probabilistic learning 1
1.1.1 Definition of probabilistic learning 1
1.1.2 The Importance of probabilistic learning task 2
1.1.3 Previously reviewed brain regions in probabilistic learning task 3
1.1.4 Model-based analysis of probabilistic learning 6
1.1.5 The multifaceted and dynamic process of probabilistic learning task 8
1.2 Usage of c-fos as a neural activity indicator 10
1.2.1 Introduction of immediate early gene: c-fos 10
1.2.2 Usage of Fos as a neural activity indicators 11
1.3 Using mice to study probabilistic learning 12
1.3.1 Taking advantage of genetically modified mice as a model 12
1.3.2 Mice version chamber for choice behavior researches 13
1.3.3 TRAP2 mice 13
1.3.4 Advantages of TRAP2 mice 14
1.3.5 Chemogenetic manipulation 15
1.4 The objective of this study 17
Chapter 2 Materials and Methods 19
2.1 General materials and methods 19
2.1.1 Animals 19
2.1.2 Food restriction schedule 20
2.1.3 Locomotor activity 20
2.2 Experiment 1 21
2.2.1 2-choice probabilistic learning task 21
2.2.2 Drug preparation 22
2.2.3 Immunofluorescent staining 23
2.3 Experiment 2 24
2.3.1 AAV Injection 24
2.3.2 CNO 24
2.3.3 2-choice probabilistic learning task 25
2.3.4 Surgery site verification 25
2.4 Data analysis and statistics 26
2.4.1 Analysis of choice strategy 26
2.4.2 Reward-Punishment model 26
2.4.3 Statistics 28
Chapter 3 Results 29
3.1 Results of Experiment 1 29
3.1.1 The result of locomotor activity showed no difference between the first and last day groups 29
3.1.2 Medial orbitofrontal cortex and dorsal medial striatum had higher activity levels in the first-day group 29
3.1.3 Choice strategy analysis showed that daily win-stay was a potential indicator of defining the earlier and later acquisition phase 31
3.2 Results of Experiment 2 32
3.2.1 Defining the day M 32
3.2.2 The result of locomotor activity and virus infection area showed no difference 33
3.2.3 The all inhibition and early-inhibition group had more total learning trials than control group, and the early-inhibition group also had more learning trials than late-inhibition group. 33
3.2.4 The all-inhibition and early-inhibition group had more learning trials before day M than control group and late inhibition group while the trial numbers after day M were all comparable. 34
3.2.5 Reward-no-reward model fitting results 35
Chapter 4 Discussion 37
4.1 Summary 37
4.2 The activity dynamics of medial orbital frontal cortex and dorsal medial striatum 38
4.3 Daily win-stay ratio as an indicator to divide probabilistic acquisition phase 39
4.4 Overlapping frequency of acquisition and the testing phase 40
4.5 The limitation of the research 41
4.6 Future work 44
References 45
Figures 57
-
dc.language.isoen-
dc.subject化學遺傳學抑制zh_TW
dc.subjectTRAP2基因編輯小鼠zh_TW
dc.subject機率學習zh_TW
dc.subject背內側紋狀體zh_TW
dc.subjectDMSen
dc.subjectProbabilistic learningen
dc.subjectTRAP2 miceen
dc.subjectchemogenetic inhibitionen
dc.title利用TRAP2小鼠和化學遺傳學抑制探討選定腦區在兩機率選項作業學習過程中的角色zh_TW
dc.titleInvestigating the role of selected brain regions in the acquisition of a 2-choice probabilistic learning task using TRAP2 mice and chemogenetic inhibition.en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee姚皓傑;蔡惠珍;蕭逸澤zh_TW
dc.contributor.oralexamcommitteeHau-Jie Yau;Hey-Jen Tsay;Yi-Tse Hsiaoen
dc.subject.keyword機率學習,背內側紋狀體,TRAP2基因編輯小鼠,化學遺傳學抑制,zh_TW
dc.subject.keywordProbabilistic learning,DMS,TRAP2 mice,chemogenetic inhibition,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202303726-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept心理學系-
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved