請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李綱 | zh_TW |
| dc.contributor.advisor | Kang Li | en |
| dc.contributor.author | 周庚緯 | zh_TW |
| dc.contributor.author | Keng-Wei Chou | en |
| dc.date.accessioned | 2023-09-22T16:39:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] Society of Automotive Engineering. SAE J3016 Surface Vehicle Recommended Practice. 5, Jun 2018.
[2] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.Development of autonomous car—part i: Distributed system architecture and development process. IEEE Transactions on Industrial Electronics, 61(12):7131–7140,2014. [3] M. TOSSAINT, J. SAMSON, F. TORAN, J. VENTURA-TRAVESET,M. HERNANDEZ-PAJARES, J.M. JUAN, J. SANZ, and P. RAMOS-BOSCH.The stanford–esa integrity diagram: A new tool for the user domain sbas integrity assessment. NAVIGATION, 54(2):153–162, 2007. [4] Tyler G.R. Reid, Sarah E. Houts, Robert Cammarata, Graham Mills, Siddharth Agarwal, Ankit Vora, and Gaurav Pandey. Localization requirements for autonomous vehicles. SAE International Journal of Connected and Automated Vehicles, 2(3), Sep 2019. [5] Chrysler Corporation, Ford Motor Company, General Motors Corporation, and Automotive Industry Action Group. Potential Failure Mode and Effects Analysis (FMEA): Reference Manual. Chrysler LLC, Ford Motor Company, General Motors Corporation, 2008. [6] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks, 2013. [7] Christopher Olah. Understanding lstm networks, Aug 2015. [8] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. International Journal of Robotics Research (IJRR), 2013. [9] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed iterative closest point algorithm. In 2002 International Conference on Pattern Recognition, volume 3, pages 545–548 vol.3, 2002. [10] 林舜友. 融合影像與圖資之自駕運具定位系統性能提升研究. Jan 2018. [11] 交通部道路交通安全督導委員會. 道路交通事故, 2022. [12] 交通部公路總局. 機動車輛登記數, 2022. [13] 交通部道路交通安全督導委員會. 道路交通事故—按駕乘車種分, 2022. [14] 行政院性別平等會. 運輸部門能源消費調查性別分析報告, Nov 2016. [15] 交通技術標準規範公路類公路工程部. 公路路線設計規範, Sep 2019. [16] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models, 2023. [17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models,2020. [18] A Welte, SP Xu, and P Bonnifait. Protection levels for high integrity localization for autonomous driving. PhD thesis, ENSTA Bretagne, Univ. Angers., 2017. [19] J. Cosmen-Schortmann, M. Azaola-Saenz, M.A. Martinez-Olague, and M. ToledoLopez. Integrity in urban and road environments and its use in liability critical applications. In 2008 IEEE/ION Position, Location and Navigation Symposium, pages 972–983, 2008. [20] Olivier Le Marchand, Philippe Bonnifait, Javier Ibañez-Guzmán, David Betaille, and François Peyret. Characterization of gps multipath for passenger vehicles across urban environments. ATTI dell’Istituto Italiano di Navigazione, (189):77–88, 2009. [21] P. Biber and W. Strasser. The normal distributions transform: a new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 3, pages 2743–2748 vol.3, 2003. [22] Martin Magnusson, Andreas Nuchter, Christopher Lorken, Achim J. Lilienthal, and Joachim Hertzberg. Evaluation of 3d registration reliability and speed - a comparison of icp and ndt. In 2009 IEEE International Conference on Robotics and Automation, pages 3907–3912, 2009. [23] Simona Nobili, Georgi Tinchev, and Maurice Fallon. Predicting alignment risk to prevent localization failure. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1003–1010, 2018. [24] Weisong Wen, Li-Ta Hsu, and Guohao Zhang. Performance analysis of ndt-based graph slam for autonomous vehicle in diverse typical driving scenarios of hong kong. Sensors, 18(11), 2018. [25] Lars Nielsen, Mattias Nyberg, Erik Frisk, Christer Bäckström, Anders Henriksson, Inger Klein, Fredrik Gustafsson, and Svante Gunnarsson. Issues in diagnosis, supervision, and safety, 1996. [26] 蘇泓珈. 自駕車輛自主定位系統之多感測器故障偵測與隔離方法. Oct 2021. [27] Kyungil Seo, Jaehoon Lee, Je-young Lee, and Kyongsu Yi. Fail safe process of vehicle localization for reliability improvement of lv3 autonomous driving. International journal of automotive technology, 22:529–535, 2021. [28] Akinobu Fujii, Minoru Tanaka, Hidenori Yabushita, Takemitsu Mori, and Tadashi Odashima. Detection of localization failure using logistic regression. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4313–4318, 2015. [29] Zhipeng Wang, Bo Li, Zhiqiang Dan, Hongxia Wang, and Kun Fang. 3d lidar aided gnss/ins integration fault detection, localization and integrity assessment in urban canyons. Remote Sensing, 14(18):4641, 2022. [30] Joelle Al Hage, Philippe Xu, Philippe Bonnifait, and Javier Ibanez-Guzman. Localization integrity for intelligent vehicles through fault detection and position error characterization. IEEE Transactions on Intelligent Transportation Systems, 23(4):2978–2990, 2022. [31] Anthony Bagnall. Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29, 06 2014. [32] Anthony Bagnall, Aaron Bostrom, James Large, and Jason Lines. The great time series classification bake off: An experimental evaluation of recently proposed algorithms. extended version, 2016. [33] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. A bag-of-features framework to classify time series. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2796–2802, 2013. [34] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. A time series forest for classification and feature extraction, 2013. [35] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural networks: A strong baseline, 2016. [36] Joan Serrà, Santiago Pascual, and Alexandros Karatzoglou. Towards a universal neural network encoder for time series, 2018. [37] Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolutional neural networks for time series classification, 2016. [38] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data Augmentation for Time Series Classification using Convolutional Neural Networks. In ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, Riva Del Garda, Italy, September 2016. [39] L. Bottou, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. LeCun, U.A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: a case study in handwritten digit recognition. In Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), volume 2, pages 77–82 vol.2, 1994. [40] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. LSTM fully convolutional networks for time series classification. IEEE Access, 6:1662–1669, 2018. [41] 陳俊儒. 基於深度學習六維姿態迴歸之自主移動機器人初始姿態估測與定位失效偵測方法. July 2021. [42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. [43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vince [44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015. [45] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications, 2017. [46] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. [47] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014. [48] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection, 2018. [49] Samuel Drake. Converting gps coordinates (phil lambdal h) to navigation coordination (enu). 01 2002. [50] Wei Huang and Xiaoxin Su. Design of a fault detection and isolation system for intelligent vehicle navigation system. International Journal of Navigation and Observation, 2015:1–19, 01 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89913 | - |
| dc.description.abstract | 本研究提出了一套用於自動駕駛車輛,定位系統內錯誤訊號偵測與排除的深度模型;文中以設計執行域及道路設計規範定義出了定位系統所需要的規格作為定位失效的判斷依據,並分析自駕定位系統內各演算法及感測器的訊號樣態、機率分布等設計錯誤訊號的參數以進行錯誤注入;本研究同時使用了卷積神經網路(Convolutional Neural Network, CNN)及閘門遞迴單元(Gated Recurrent Unit, GRU)設計錯誤訊號偵測的深度模型,並以自監督式的方式進行訓練。在實驗中,本研究以開源的實車定位資料集(KITTI dataset)進行測試並與傳統的統計檢測方式-序貫概率比檢驗(Sequential Probability Ratio Test, SPRT)進行比較,實驗結果中,SPRT在特定型態的錯誤上會偵測不到或是誤偵測樣本過多導致定位系統因錯誤訊號而失效,單純僅使用CNN或GRU模型的能夠在單一的錯誤訊號得到略優的性能,但在其他型態的錯誤訊號上會因為模型本身性能受限而導致偵測效果欠佳,而本研究的模型在同時結合CNN及GRU模型下,能夠成功辨識各種不同定位資訊的錯誤訊號,並且同時排除八成至九成因錯誤訊號而形成的定位失效數,達到降低定位失效風險的成效。 | zh_TW |
| dc.description.abstract | This paper purposed a deep neutal network to perform fault detect and exclusion for localization systems in autonomous vehicles, the paper first defines the requirement for localization system of autonomous vehicles by performing operation design domain(ODD) and road design standards to determine failure in localization system, then using it to design parameters for performing error injection by analyzing error signals' pattern, probability distributions in localization systems. A deep neural network model by combining Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) is developed for fault detection task, the model is trained with self-supervised manner using error injection to extract features from localization information. In the experiments, this paper use an open-source dataset with real world sensor measurement, our model's performance then compared with Sequential Probability Ratio Test (SPRT), which is a statistical detection method. In the experiment, SPRT fails to detect specific types of errors or false detect some of the normal data, leading to increase the number of failures in localization system cause by error signals. By only using CNN and GRU models is capable of capture errors and achieve slightly better performance in individual cases, however, their performance is limited on some types of errors resulting in poor detection performance, our model by combining the feature extraction capabilities of CNN and GRU at the same time, it can successfully identify most of the error signals in localization systems, and eliminates 80% to 90% of localization failures caused by error signals, achieves the goal of lower localization failure risk. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:39:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:39:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書i
致謝ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章 文獻回顧 7 2.1 感測器模組誤差來源分析. . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 全球衛星導航系統. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 光學雷達定位方法. . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 誤差偵測與排除方法. . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 模型基底偵測方法. . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 資料流偵測方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第三章 研究方法 12 3.1 定位系統規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 定位完整性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 定位規格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 失效模式分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 分析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2 定位系統分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 神經網路架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 訓練模型架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2 損失函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 評估標準. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 第四章 實驗結果與分析 40 4.1 實驗架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 實驗數據. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 光學雷達定位數據. . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 全球定位系統定位數據. . . . . . . . . . . . . . . . . . . . . . . 44 4.2.3 慣性量測單元定位數據. . . . . . . . . . . . . . . . . . . . . . . 47 4.3 錯誤注入參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4.1 常態分佈誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.2 t 分布誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.3 累計誤差. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.4 資料定格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 第五章 結論與未來建議 63 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 未來建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 參考文獻 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自動駕駛車輛 | zh_TW |
| dc.subject | 定位失效偵測 | zh_TW |
| dc.subject | 定位系統 | zh_TW |
| dc.subject | 錯誤偵測與隔離 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | Localization Systems | en |
| dc.subject | Localization Failure Detection | en |
| dc.subject | Fault Detection and Exclusion | en |
| dc.subject | Autonomous Vehicles | en |
| dc.subject | Deep Learning | en |
| dc.title | 基於深度神經網路的自動駕駛車輛之定位系統錯誤偵測與排除 | zh_TW |
| dc.title | Fault Detection and Exclusion for Localization Systems in Autonomous Vehicles using Deep Neural Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹景堯;蘇偉儁 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Yao Chan;Wei-Jiun Su | en |
| dc.subject.keyword | 自動駕駛車輛,定位系統,定位失效偵測,錯誤偵測與隔離,深度學習, | zh_TW |
| dc.subject.keyword | Autonomous Vehicles,Localization Systems,Localization Failure Detection,Fault Detection and Exclusion,Deep Learning, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202302582 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
