Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89897
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂浩宇zh_TW
dc.contributor.advisorHau-Yu Liuen
dc.contributor.author鍾佳穎zh_TW
dc.contributor.authorChia-Ying Chungen
dc.date.accessioned2023-09-22T16:35:26Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationAkeson, R. L. and Jensen, E. L. N. (2014). Circumstellar Disks around Binary Stars in Taurus. The Astrophysical Journal, 784(1):62.
Akeson, R. L., Jensen, E. L. N., Carpenter, J., Ricci, L., Laos, S., Nogueira, N. F., and Suen-Lewis, E. M. (2019). Resolved Young Binary Systems and Their Disks. The Astrophysical Journal, 872(2):158.
Akimkin, V., Ivlev, A. V., Caselli, P., Gong, M., and Silsbee, K. (2023). Coagulation-Fragmentation Equilibrium for Charged Dust: Abundance of Submicron Grains Increases Dramatically in Protoplanetary Disks. arXiv e-prints, page arXiv:2306.16408.
Andrews, S. M. (2020). Observations of Protoplanetary Disk Structures. Annual Review of Astronomy & Astrophysics, 58:483–528.
Andrews, S. M., Huang, J., Pérez, L. M., Isella, A., Dullemond, C. P., Kurtovic, N. T., Guzmán, V. V., Carpenter, J. M., Wilner, D. J., Zhang, S., Zhu, Z., Birnstiel, T., Bai, X.-N., Benisty, M., Hughes, A. M., Öberg, K. I., and Ricci, L. (2018). The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. The Astrophysical Journal Letters, 869(2):L41.
Andrews, S. M., Rosenfeld, K. A., Kraus, A. L., and Wilner, D. J. (2013). The Mass Dependence between Protoplanetary Disks and their Stellar Hosts. The Astrophysical Journal, 771(2):129.
Andrews, S. M. and Williams, J. P. (2005). Taurus-Auriga: The Submillimeter Perspective. Circumstellar Dust Disks in The Astrophysical Journal, 631(2):1134–1160.
Andrews, S. M. and Williams, J. P. (2007). A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi. The Astrophysical Journal, 671(2):1800–1812.
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., and Dullemond, C. P. (2009). Protoplanetary Disk Structures in Ophiuchus. The Astrophysical Journal, 700(2):1502–1523.
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., and Dullemond, C. P. (2010). Protoplanetary Disk Structures in Ophiuchus. II. Extension to Fainter Sources. The Astrophysical Journal, 723(2):1241–1254.
Anglada, G., Villuendas, E., Estalella, R., Beltrán, M. T., Rodrı́guez, L. F., Torrelles, J. M., and Curiel, S. (1998). Spectral Indices of Centimeter Continuum Sources in Star-forming Regions: Implications on the Nature of the Outflow Exciting Sources. The Astronomical Journal, 116(6):2953–2964.
Ansdell, M., Williams, J. P., van der Marel, N., Carpenter, J. M., Guidi, G., Hogerheijde, M., Mathews, G. S., Manara, C. F., Miotello, A., Natta, A., Oliveira, I., Tazzari, M., Testi, L., van Dishoeck, E. F., and van Terwisga, S. E. (2016a). ALMA Survey of Lupus Protoplanetary Disks. I. Dust and Gas Masses. The Astrophysical Journal, 828(1):46.
Ansdell, M., Williams, J. P., van der Marel, N., Carpenter, J. M., Guidi, G., Hogerheijde, M., Mathews, G. S., Manara, C. F., Miotello, A., Natta, A., Oliveira, I., Tazzari, M., Testi, L., van Dishoeck, E. F., and van Terwisga, S. E. (2016b). VizieR Online Data Catalog: ALMA survey of Lupus protoplanetary disks. I. (Ansdell+, 2016). VizieR Online Data Catalog, page J/ApJ/828/46.
Babaian, D. D., Ricci, L., Pascucci, I., and Isella, A. (2019). Linking the properties of protoplanetary disks and their host stars in the Taurus region. In American Astronomical Society Meeting Abstracts #234, volume 234 of American Astronomical Society Meeting Abstracts, page 105.03.
Bacciotti, F., Girart, J. M., Padovani, M., Podio, L., Paladino, R., Testi, L., Bianchi, E., Galli, D., Codella, C., Coffey, D., Favre, C., and Fedele, D. (2018). ALMA Observations of Polarized Emission toward the CW Tau and DG Tau Protoplanetary Disks: Constraints on Dust Grain Growth and Settling. The Astrophysical Journal Letters, 865(2):L12.
Barclay, T., Pepper, J., and Quintana, E. V. (2018). A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS). The Astrophysical Journal Supplement Series, 239(1):2.
Barenfeld, S. A., Carpenter, J. M., Ricci, L., and Isella, A. (2016). ALMA Observations of Circumstellar Disks in the Upper Scorpius OB Association. The Astrophysical Journal, 827(2):142.
Batalha, N. M., Rowe, J. F., Bryson, S. T., Barclay, T., Burke, C. J., Caldwell, D. A., Christiansen, J. L., Mullally, F., Thompson, S. E., Brown, T. M., Dupree, A. K., Fabrycky, D. C., Ford, E. B., Fortney, J. J., Gilliland, R. L., Isaacson, H., Latham, D. W., Marcy, G. W., Quinn, S. N., Ragozzine, D., Shporer, A., Borucki, W. J., Ciardi, D. R., Gautier, Thomas N., I., Haas, M. R., Jenkins, J. M., Koch, D. G., Lissauer, J. J., Rapin, W., Basri, G. S., Boss, A. P., Buchhave, L. A., Carter, J. A., Charbonneau, D., Christensen-Dalsgaard, J., Clarke, B. D., Cochran, W. D., Demory, B.-O., Desert, J.-M., Devore, E., Doyle, L. R., Esquerdo, G. A., Everett, M., Fressin, F., Geary, J. C., Girouard, F. R., Gould, A., Hall, J. R., Holman, M. J., Howard, A. W., Howell, S. B., Ibrahim, K. A., Kinemuchi, K., Kjeldsen, H., Klaus, T. C., Li, J., Lucas, P. W., Meibom, S., Morris, R. L., Prša, A., Quintana, E., Sanderfer, D. T., Sasselov, D., Seader, S. E., Smith, J. C., Steffen, J. H., Still, M., Stumpe, M. C., Tarter, J. C., Tenenbaum, P., Torres, G., Twicken, J. D., Uddin, K., Van Cleve, J., Walkowicz, L., and Welsh, W. F. (2013). Planetary Candidates Observed by Kepler. III. Analysis of the First 16 Months of Data. The Astrophysical Journal Supplement Series, 204(2):24.
Beckwith, S. V. W. and Sargent, A. I. (1991). Particle Emissivity in Circumstellar Disks. The Astrophysical Journal, 381:250.
Birnstiel, T., Dullemond, C. P., Zhu, Z., Andrews, S. M., Bai, X.-N., Wilner, D. J., Carpenter, J. M., Huang, J., Isella, A., Benisty, M., Pérez, L. M., and Zhang, S. (2018). The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model. The Astrophysical Journal Letters, 869(2):L45.
Birnstiel, T., Fang, M., and Johansen, A. (2016). Dust Evolution and the Formation of Planetesimals. , 205(1-4):41–75.
Carpenter, J. M., Ricci, L., and Isella, A. (2014). An ALMA Continuum Survey of Circumstellar Disks in the Upper Scorpius OB Association. The Astrophysical Journal, 787(1):42.
Cazzoletti, P., Manara, C. F., Liu, H. B., van Dishoeck, E. F., Facchini, S., Alcalà, J. M., Ansdell, M., Testi, L., Williams, J. P., Carrasco-González, C., Dong, R., Forbrich, J., Fukagawa, M., Galván-Madrid, R., Hirano, N., Hogerheijde, M., Hasegawa, Y., Muto, T., Pinilla, P., Takami, M., Tamura, M., Tazzari, M., and Wisniewski, J. P. (2019). ALMA survey of Class II protoplanetary disks in Corona Australis: a young region with low disk masses. Astronomy & Astrophysics, 626:A11.
Chiang, E. I. and Goldreich, P. (1997). Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks. The Astrophysical Journal, 490(1):368–376.
Cieza, L. A., Ruı́z-Rodrı́guez, D., Hales, A., Casassus, S., Pérez, S., Gonzalez-Ruilova, C., Cánovas, H., Williams, J. P., Zurlo, A., Ansdell, M., Avenhaus, H., Bayo, A., Bertrang, G. H. M., Christiaens, V., Dent, W., Ferrero, G., Gamen, R., Olofsson, J., Orcajo, S., Peña Ramı́rez, K., Principe, D., Schreiber, M. R., and van der Plas, G. (2019). The Ophiuchus DIsc Survey Employing ALMA (ODISEA) - I: project description and continuum images at 28 au resolution. Monthly Notices of the Royal Astronomical Society, 482(1):698–714.
Cieza, L. A., Ruı́z-Rodrı́guez, D., Perez, S., Casassus, S., Williams, J. P., Zurlo, A., Principe, D. A., Hales, A., Prieto, J. L., Tobin, J. J., Zhu, Z., and Marino, S. (2018). The ALMA early science view of FUor/EXor objects - V. Continuum disc masses and sizes. Monthly Notices of the Royal Astronomical Society, 474(4):4347–4357.
Cox, E. G., Harris, R. J., Looney, L. W., Chiang, H.-F., Chandler, C., Kratter, K., Li, Z.-Y., Perez, L., and Tobin, J. J. (2017). Protoplanetary Disks in ρ Ophiuchus as Seen from ALMA. The Astrophysical Journal, 851(2):83.
Dent, W. R. F., Pinte, C., Cortes, P. C., Ménard, F., Hales, A., Fomalont, E., and de Gregorio-Monsalvo, I. (2019). Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system. Monthly Notices of the Royal Astronomical Society, 482(1):L29–L33.
Drażkowska, J. and Alibert, Y. (2017). Planetesimal formation starts at the snow line. Astronomy & Astrophysics, 608:A92.
Dullemond, C. P., Dominik, C., and Natta, A. (2001). Circumstellar Disks with an Inner Hole. Passive Irradiated The Astrophysical Journal, 560(2):957–969.
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. (2013). emcee: The mcmc hammer. PASP, 125:306–312. Francis, L. and van der Marel, N. (2020). Dust-depleted Inner Disks in a Large Sample of Transition Disks through Long-baseline ALMA Observations. The Astrophysical Journal, 892(2):111.
Gaia Collaboration, Prusti, T., and de Bruijne, J. H. J. e. a. (2016). The Gaia mission. Astronomy & Astrophysics, 595:A1. Gaia Collaboration, Vallenari, A., and Brown, A. G. A. e. a. (2022). Gaia Data
Release 3: Summary of the content and survey properties. arXiv e-prints, page arXiv:2208.00211.
Galván-Madrid, R., Liu, H. B., Izquierdo, A. F., Miotello, A., Zhao, B., Carrasco-González, C., Lizano, S., and Rodrı́guez, L. F. (2018). On the Effects of Self-obscuration in the (Sub)Millimeter Spectral Indices and the Appearance of Protostellar Disks. The Astrophysical Journal, 868(1):39.
Galván-Madrid, R., Liu, H. B., Manara, C. F., Forbrich, J., Pascucci, I., Carrasco-González, C., Goddi, C., Hasegawa, Y., Takami, M., and Testi, L. (2014). Constraints on photoevaporation models from (lack of) radio emission in the Corona Australis protoplanetary disks. Astronomy & Astrophysics, 570:L9.
Getman, K. V., Akimkin, V. V., Arulanantham, N., Kóspál, Á., Semenov, D. A., Smirnov-Pinchukov, G. V., and van Terwisga, S. E. (2022). The Young Binary DQ Tau Produces Another X-Ray Flare Near Periastron. Research Notes of the American Astronomical Society, 6(3):64.
Guidi, G., Isella, A., Testi, L., Chandler, C. J., Liu, H. B., Schmid, H. M., Rosotti, G., Meng, C., Jennings, J., Williams, J. P., Carpenter, J. M., de Gregorio-Monsalvo, I., Li, H., Liu, S. F., Ortolani, S., Quanz, S. P., Ricci, L., and Tazzari, M. (2022). Distribution of solids in the rings of the HD 163296 disk: a multiwavelength study. Astronomy & Astrophysics, 664:A137.
Hansen, B. M. S. and Murray, N. (2012). Migration Then Assembly: Formation of Neptune-mass Planets inside 1 AU. The Astrophysical Journal, 751(2):158.
Hartmann, L. and Bae, J. (2018). How do T Tauri stars accrete? Monthly Notices of the Royal Astronomical Society, 474(1):88–94.
Hashimoto, J., Liu, H. B., Dong, R., Liu, B., and Muto, T. (2022). Grain Growth in the Dust Ring with a Crescent around the Very Low-mass Star ZZ Tau IRS with JVLA. The Astrophysical Journal, 941(1):66.
Hashimoto, J., Muto, T., Dong, R., Liu, H. B., van der Marel, N., Francis, L., Hasegawa, Y., and Tsukagoshi, T. (2021). ALMA Observations of the Asymmetric Dust Disk around DM Tau. The Astrophysical Journal, 911(1):5.
Herczeg, G. J. and Hillenbrand, L. A. (2014). An Optical Spectroscopic Study of T Tauri Stars. I. Photospheric Properties. The Astrophysical Journal, 786(2):97.
Hildebrand, R. H. (1983). The determination of cloud masses and dust characteristics from submillimetre thermal emission. , 24:267–282.
Huang, J., Andrews, S. M., Dullemond, C. P., Öberg, K. I., Qi, C., Zhu, Z., Birnstiel, T., Carpenter, J. M., Isella, A., Macı́as, E., McClure, M. K., Pérez, L. M., Teague, R., Wilner, D. J., and Zhang, S. (2020). A Multifrequency ALMA Characterization of Substructures in the GM Aur Protoplanetary Disk. The Astrophysical Journal, 891(1):48.
Hull, C. L. H., Yang, H., Li, Z.-Y., Kataoka, A., Stephens, I. W., Andrews, S., Bai, X., Cleeves, L. I., Hughes, A. M., Looney, L., Pérez, L. M., and Wilner, D (2018). ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk. The Astrophysical Journal, 860(1):82.
Itoh, Y., Hayashi, M., Tamura, M., Tsuji, T., Oasa, Y., Fukagawa, M., Hayashi, S. S., Naoi, T., Ishii, M., Mayama, S., Morino, J.-i., Yamashita, T., Pyo, T.-S., Nishikawa, T., Usuda, T., Murakawa, K., Suto, H., Oya, S., Takato, N., Ando, H., Miyama, S. M., Kobayashi, N., and Kaifu, N. (2005). A Young Brown Dwarf Companion to DH Tauri. The Astrophysical Journal, 620(2):984–993.
Johansen, A. and Youdin, A. (2007). Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration. The Astrophysical Journal, 662(1):627–641.
Kataoka, A., Muto, T., Momose, M., Tsukagoshi, T., and Dullemond, C. P. (2016a). Grain Size Constraints on HL Tau with Polarization Signature. The Astrophysical Journal, 820(1):54.
Kataoka, A., Tsukagoshi, T., Momose, M., Nagai, H., Muto, T., Dullemond, C. P., Pohl, A., Fukagawa, M., Shibai, H., Hanawa, T., and Murakawa, K. (2016b). Submillimeter Polarization Observation of the Protoplanetary Disk around HD 142527. The Astrophysical Journal Letters, 831(2):L12.
Kóspál, Á., Cruz-Sáenz de Miera, F., White, J. A., Ábrahám, P., Chen, L., Csengeri, T., Dong, R., Dunham, M. M., Fehér, O., Green, J. D., Hashimoto, J., Henning, T., Hogerheijde, M., Kudo, T., Liu, H. B., Takami, M., and Vorobyov, E. I. (2021).
Massive Compact Disks around FU Orionis-type Young Eruptive Stars Revealed by ALMA. The Astrophysical Journal Supplement Series, 256(2):30. Kraus, A. L. and Hillenbrand, L. A. (2009). The Coevality of Young Binary Systems. The Astrophysical Journal, 704(1):531–547.
Kraus, A. L., Ireland, M. J., Martinache, F., and Hillenbrand, L. A. (2011). Mapping the Shores of the Brown Dwarf Desert. II. Multiple Star Formation in Taurus-Auriga. The Astrophysical Journal, 731(1):8.
Kurtovic, N. T., Pinilla, P., Long, F., Benisty, M., Manara, C. F., Natta, A., Pascucci, I., Ricci, L., Scholz, A., and Testi, L. (2021). Size and structures of disks around very low mass stars in the Taurus star-forming region. Astronomy & Astrophysics, 645:A139.
Li, J., Bergin, E. A., Blake, G. A., Ciesla, F. J., and Hirschmann, M. M. (2021). Earth’s carbon deficit caused by early loss through irreversible sublimation. Science Advances, 7(14):eabd3632.
Li, J. I.-H., Liu, H. B., Hasegawa, Y., and Hirano, N. (2017). Systematic Analysis of Spectral Energy Distributions and the Dust Opacity Indices for Class 0 Young Stellar Objects. The Astrophysical Journal, 840(2):72.
Lichtenberg, T., Drażkowska, J., Schönbächler, M., Golabek, G. J., and Hands, T. O. (2021). Bifurcation of planetary building blocks during Solar System formation. Science, 371(6527):365–370.
Liu, B., Lambrechts, M., Johansen, A., Pascucci, I., and Henning, T. (2020). Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astronomy & Astrophysics, 638:A88.
Liu, H. B. (2019). The Anomalously Low (Sub)Millimeter Spectral Indices of Some Protoplanetary Disks May Be Explained By Dust Self-scattering. The Astrophysical Journal Letters, 877(2):L22.
Liu, H. B. (2021). Magnetically Regulated Disk Formation in the Inner 100 au Region of the Class 0 Young Stellar Object OMC-3/MMS 6 Resolved by JVLA and ALMA. The Astrophysical Journal, 914(1):25.
Liu, H. B., Galván-Madrid, R., Forbrich, J., Rodrı́guez, L. F., Takami, M., Costigan, G., Manara, C. F., Yan, C.-H., Karr, J., Chou, M.-Y., Ho, P. T. P., and Zhang, Q. (2014). Time Monitoring of Radio Jets and Magnetospheres in the Nearby Young Stellar Cluster R Coronae Australis. The Astrophysical Journal, 780(2):155.
Liu, H. B., Galván-Madrid, R., Vorobyov, E. I., Kóspál, Á., Rodrı́guez, L. F., Dunham, M. M., Hirano, N., Henning, T., Takami, M., Dong, R., Hashimoto, J., Hasegawa, Y., and Carrasco-González, C. (2016). Absence of Significant Cool Disks in Young Stellar Objects Exhibiting Repetitive Optical Outbursts. The Astrophysical Journal Letters, 816(2):L29.
Liu, H. B., Mérand, A., Green, J. D., Pérez, S., Hales, A. S., Yang, Y.-L., Dunham, M. M., Hasegawa, Y., Henning, T., Galván-Madrid, R., Kóspál, Á., Takami, M., Vorobyov, E. I., and Zhu, Z. (2019). Diagnosing 0.1-10 au Scale Morphology of the FU Ori Disk Using ALMA and VLTI/GRAVITY. The Astrophysical Journal, 884(1):97.
Liu, H. B., Tsai, A.-L., Chen, W. P., Liu, J. Z., Zhang, X., Ma, S., Elbakyan, V., Green, J. D., Hales, A. S., Liu, S.-Y., Takami, M., Pérez, S., Vorobyov, E. I., and Yang, Y.-L. (2021). Millimeter-sized Dust Grains Surviving the Water-sublimating Temperature in the Inner 10 au of the FU Ori Disk. The Astrophysical Journal, 923(2):270.
Liu, H. B., Vorobyov, E. I., Dong, R., Dunham, M. M., Takami, M., Galván-Madrid, R., Hashimoto, J., Kóspál, Á., Henning, T., Tamura, M., Rodrı́guez, L. F., Hirano, N., Hasegawa, Y., Fukagawa, M., Carrasco-Gonzalez, C., and Tazzari, M. (2017). A concordant scenario to explain FU Orionis from deep centimeter and millimeter interferometric observations. Astronomy & Astrophysics, 602:A19.
Long, F., Andrews, S. M., Vega, J., Wilner, D. J., Chandler, C. J., Ragusa, E., Teague, R., Pérez, L. M., Calvet, N., Carpenter, J. M., Henning, T., Kwon, W., Linz, H., and Ricci, L. (2021). The Architecture of the V892 Tau System: The Binary and Its Circumbinary Disk. The Astrophysical Journal, 915(2):131.
Long, F., Andrews, S. M., Zhang, S., Qi, C., Benisty, M., Facchini, S., Isella, A., Wilner, D. J., Bae, J., Huang, J., Loomis, R. A., Öberg, K. I., and Zhu, Z. (2022). ALMA Detection of Dust Trapping around Lagrangian Points in the LkCa 15 Disk. The Astrophysical Journal Letters, 937(1):L1.
Long, F., Herczeg, G. J., Harsono, D., Pinilla, P., Tazzari, M., Manara, C. F., Pascucci, I., Cabrit, S., Nisini, B., Johnstone, D., Edwards, S., Salyk, C., Menard, F., Lodato, G., Boehler, Y., Mace, G. N., Liu, Y., Mulders, G. D., Hendler, N., Ragusa, E., Fischer, W. J., Banzatti, A., Rigliaco, E., van de Plas, G., Dipierro, G., Gully-Santiago, M., and Lopez-Valdivia, R. (2019). Compact Disks in a High-resolution ALMA Survey of Dust Structures in the Taurus Molecular Cloud. The Astrophysical Journal, 882(1):49.
Long, F., Pinilla, P., Herczeg, G. J., Harsono, D., Dipierro, G., Pascucci, I., Hendler, N., Tazzari, M., Ragusa, E., Salyk, C., Edwards, S., Lodato, G., van de Plas, G., Johnstone, D., Liu, Y., Boehler, Y., Cabrit, S., Manara, C. F., Menard, F., Mulders, G. D., Nisini, B., Fischer, W. J., Rigliaco, E., Banzatti, A., Avenhaus, H., and Gully-Santiago, M. (2018). Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. The Astrophysical Journal, 869(1):17.
Loomis, R. A., Öberg, K. I., Andrews, S. M., and MacGregor, M. A. (2017). A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau. The Astrophysical Journal, 840(1):23. Manara, C. F., Morbidelli, A., and Guillot, T. (2018). Why do protoplanetary disks appear not massive enough to form the known exoplanet population? Astronomy & Astrophysics, 618:L3.
Okuzumi, S. (2009). Electric Charging of Dust Aggregates and its Effect on Dust Coagulation in Protoplanetary Disks. The Astrophysical Journal, 698(2):1122–1135.
Okuzumi, S., Tanaka, H., Kobayashi, H., and Wada, K. (2012). Rapid Coagulation of Porous Dust Aggregates outside the Snow Line: A Pathway to Successful Icy Planetesimal Formation. The Astrophysical Journal, 752(2):106.
Okuzumi, S. and Tazaki, R. (2019). Nonsticky Ice at the Origin of the Uniformly Polarized Submillimeter Emission from the HL Tau Disk. The Astrophysical Journal, 878(2):132.
Pascucci, I., Skinner, B. N., Deng, D., Ruaud, M., Gorti, U., Schwarz, K. R., Chapillon, E., Vioque, M., and Miley, J. (2023). Large Myr-old Disks are Not Severely Depleted of gas-phase CO or carbon. arXiv e-prints, page arXiv:2307.02704.
Pérez, L. M., Carpenter, J. M., Chandler, C. J., Isella, A., Andrews, S. M., Ricci, L., Calvet, N., Corder, S. A., Deller, A. T., Dullemond, C. P., Greaves, J. S., Harris, R. J., Henning, T., Kwon, W., Lazio, J., Linz, H., Mundy, L. G., Sargent, A. I., Storm, S., Testi, L., and Wilner, D. J. (2012). Constraints on the Radial Variation of Grain Growth in the AS 209 Circumstellar Disk. The Astrophysical Journal Letters, 760(1):L17.
Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T., and Fong, W. (1994). Composition and Radiative Properties of Grains in Molecular Clouds and Accretion Disks. The Astrophysical Journal, 421:615.
Qi, C. (2003). Initial Results from the Submillimeter Array. In Curry, C. L. and Fich, M., editors, SFChem 2002: Chemistry as a Diagnostic of Star Formation, page 393.
Ricci, L., Testi, L., Natta, A., Neri, R., Cabrit, S., and Herczeg, G. J. (2010). Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. Astronomy & Astrophysics, 512:A15.
Salter, D. M., Hogerheijde, M. R., and Blake, G. A. (2008). Captured at millimeter wavelengths: a flare from the classical T Tauri star DQ Tauri. Astronomy & Astrophysics, 492(1):L21–L24.
Sault, R. J., Teuben, P. J., and Wright, M. C. H. (1995). A Retrospective View of MIRIAD. In Shaw, R. A., Payne, H. E., and Hayes, J. J. E., editors, Astronomical Data Analysis Software and Systems IV, volume 77 of Astronomical Society of the Pacific Conference Series, page 433.
Simon, M., Guilloteau, S., Beck, T. L., Chapillon, E., Di Folco, E., Dutrey, A., Feiden, G. A., Grosso, N., Piétu, V., Prato, L., and Schaefer, G. H. (2019). Masses and Implications for Ages of Low-mass Pre-main-sequence Stars in Taurus and Ophiuchus. The Astrophysical Journal, 884(1):42.
Stapper, L. M., Hogerheijde, M. R., van Dishoeck, E. F., and Mentel, R. (2022). The mass and size of Herbig disks as seen by ALMA. Astronomy & Astrophysics, 658:A112.
Stephens, I. W., Yang, H., Li, Z.-Y., Looney, L. W., Kataoka, A., Kwon, W., Fernández-López, M., Hull, C. L. H., Hughes, M., Segura-Cox, D., Mundy, L., Crutcher, R., and Rao, R. (2017). ALMA Reveals Transition of Polarization Pattern with Wavelength in HL Tau’s Disk. The Astrophysical Journal, 851(1):55.
Tang, Y.-W., Dutrey, A., Guilloteau, S., Piétu, V., Di Folco, E., Beck, T., Ho, P. T. P., Boehler, Y., Gueth, F., Bary, J., and Simon, M. (2014). Circumbinary Ring, Circumstellar Disks, and Accretion in the Binary System UY Aurigae. The Astrophysical Journal, 793(1):10.
Tang, Y.-W., Guilloteau, S., Dutrey, A., Muto, T., Shen, B.-T., Gu, P.-G., Inutsuka, S.-i., Momose, M., Pietu, V., Fukagawa, M., Chapillon, E., Ho, P. T. P., di Folco, E., Corder, S., Ohashi, N., and Hashimoto, J. (2017). Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity. The Astrophysical Journal, 840(1):32.
Tazzari, M., Clarke, C. J., Testi, L., Williams, J. P., Facchini, S., Manara, C. F., Natta, A., and Rosotti, G. (2021). Multiwavelength continuum sizes of protoplanetary discs: scaling relations and implications for grain growth and radial drift. Monthly Notices of the Royal Astronomical Society, 506(2):2804–2823.
Testi, L., Birnstiel, T., Ricci, L., Andrews, S., Blum, J., Carpenter, J., Dominik, C., Isella, A., Natta, A., Williams, J. P., and Wilner, D. J. (2014). Dust Evolution in Protoplanetary Disks. In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T., editors, Protostars and Planets VI, pages 339–361.
Testi, L., Natta, A., Manara, C. F., de Gregorio Monsalvo, I., Lodato, G., Lopez, C., Muzic, K., Pascucci, I., Sanchis, E., Miranda, A. S., Scholz, A., De Simone, M., and Williams, J. P. (2022). The protoplanetary disk population in the ρ-Ophiuchi region L1688 and the time evolution of Class II YSOs. Astronomy & Astrophysics, 663:A98.
Testi, L., Natta, A., Scholz, A., Tazzari, M., Ricci, L., and de Gregorio Monsalvo, I. (2016). Brown dwarf disks with ALMA: Evidence for truncated dust disks in Ophiuchus. Astronomy & Astrophysics, 593:A111.
Tripathi, A., Andrews, S. M., Birnstiel, T., Chandler, C. J., Isella, A., Pérez, L. M., Harris, R. J., Ricci, L., Wilner, D. J., Carpenter, J. M., Calvet, N., Corder, S. A., Deller, A. T., Dullemond, C. P., Greaves, J. S., Henning, T., Kwon, W., Lazio, J., Linz, H., and Testi, L. (2018). The Millimeter Continuum Size-Frequency Relationship in the UZ Tau E Disk. The Astrophysical Journal, 861(1):64.
Tripathi, A., Andrews, S. M., Birnstiel, T., and Wilner, D. J. (2017). A millimeter Continuum Size-Luminosity Relationship for Protoplanetary Disks. The Astrophysical Journal, 845(1):44.
Tsukagoshi, T., Nomura, H., Muto, T., Kawabe, R., Ishimoto, D., Kanagawa, K. D., Okuzumi, S., Ida, S., Walsh, C., and Millar, T. J. (2016). A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya. The Astrophysical Journal Letters, 829(2):L35.
Ueda, T., Kataoka, A., and Tsukagoshi, T. (2020). Scattering-induced Intensity Reduction: Large Mass Content with Small Grains in the Inner Region of the TW Hya disk. The Astrophysical Journal, 893(2):125.
Ueda, T., Kataoka, A., and Tsukagoshi, T. (2022). Massive Compact Dust Disk with a Gap around CW Tau Revealed by ALMA Multiband Observations. The Astrophysical Journal, 930(1):56.
van der Marel, N., Dong, R., di Francesco, J., Williams, J. P., and Tobin, J. (2019). Protoplanetary Disk Rings and Gaps across Ages and Luminosities. The Astrophysical Journal, 872(1):112.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J. Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.
Vorobyov, E. I., Skliarevskii, A. M., Elbakyan, V. G., Pavlyuchenkov, Y., Akimkin, V., and Guedel, M. (2019). Gravitoviscous protoplanetary disks with a dust component. I. The importance of the inner sub-au region. Astronomy & Astrophysics, 627:A154.
Wada, K., Tanaka, H., Suyama, T., Kimura, H., and Yamamoto, T. (2009). Collisional Growth Conditions for Dust Aggregates. The Astrophysical Journal, 702(2):1490–1501.
Weidenschilling, S. J. (1977). Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180:57–70.
White, R. J. and Ghez, A. M. (2001). Observational Constraints on the Formation and Evolution of Binary Stars. The Astrophysical Journal, 556(1):265–295.
Williams, J. P., Cieza, L., Hales, A., Ansdell, M., Ruiz-Rodriguez, D., Casassus, S., Perez, S., and Zurlo, A. (2019). The Ophiuchus DIsk Survey Employing ALMA (ODISEA): Disk Dust Mass Distributions across Protostellar Evolutionary Classes. The Astrophysical Journal Letters, 875(2):L9.
Woitke, P., Min, M., Pinte, C., Thi, W. F., Kamp, I., Rab, C., Anthonioz, F., Antonellini, S., Baldovin-Saavedra, C., Carmona, A., Dominik, C., Dionatos, O., Greaves, J., Güdel, M., Ilee, J. D., Liebhart, A., Ménard, F., Rigon, L., Waters, L. B. F. M., Aresu, G., Meijerink, R., and Spaans, M. (2016). Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs. Astronomy & Astrophysics, 586:A103.
Xu, W. (2022). Testing a New Model of Embedded Protostellar Disks against Observations: The Majority of Orion Class 0/I Disks Are Likely Warm, Massive, and Gravitationally Unstable. The Astrophysical Journal, 934(2):156.
Yamamuro, R., Tanaka, K. E. I., and Okuzumi, S. (2023). Massive Protostellar Disks as a Hot Laboratory of Silicate Grain Evolution. The Astrophysical Journal, 949(1):29.
Youdin, A. and Johansen, A. (2007). Protoplanetary Disk Turbulence Driven by the Streaming Instability: Linear Evolution and Numerical Methods. The Astrophysical Journal, 662(1):613–626.
Zamponi, J., Maureira, M. J., Zhao, B., Liu, H. B., Ilee, J. D., Forgan, D., and Caselli, P. (2021). The young protostellar disc in IRAS 16293-2422 B is hot and shows signatures of gravitational instability. Monthly Notices of the Royal Astronomical Society, 508(2):2583–2599.
Zhu, Z., Zhang, S., Jiang, Y.-F., Kataoka, A., Birnstiel, T., Dullemond, C. P., Andrews, S. M., Huang, J., Pérez, L. M., Carpenter, J. M., Bai, X.-N., Wilner, D. J., and Ricci, L. (2019). One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering. The Astrophysical Journal Letters, 877(2):L18.
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., and Dullemond, C. P. (2010). The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astronomy & Astrophysics, 513:A57.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89897-
dc.description.abstract我們對 Taurus-Auriga 恆星形成區的 47 個 Class II 原行星盤(protoplanetary disks)進行了新的 SMA 勘測。我們的觀測在 200-400 GHz 頻率範圍內進行了12個獨立的光通量密度測量。我們將大多數的原行星盤光譜指數約束在2.0±0.2的極窄範圍內;只有少數幾個被解析的大原行星盤(例如,直徑>250 AU)呈現較大的光譜指數。對於這個結果最簡單的解釋是,所有觀測目標的(亞)毫米波光度都由極度光學厚(optically thick)(例如,τ > 10)的塵埃熱輻射主導。如果這種解釋屬實,則基於光學薄(optically thin)假設先前的測量可能會系統地低估塵埃質量至少一個數量級。我們基於光學厚(optically thick)、均勻塵埃板模型的分布模擬更偏好最大塵埃顆粒大小(maximum grain size)小於0.1mm。這可能表明,在雪線(water snowline)外的塵埃顆粒生長可能受到反彈/碎裂障壁(bouncing/fragmentation barriers)限制,並且冰包覆的塵埃顆粒可能比我們過去認的更不黏。在 Class II 原行星盤中,雪線外大部分的塵埃質量可能保留,而不是因為行星形成被消耗。雖然 Class II 原行星盤仍具有足夠的塵埃質量得以在之後的時間內供給行星形成,但塵埃凝聚和行星形成是否能在雪線外高效或自然地進行仍有疑問。zh_TW
dc.description.abstractWe present a new SMA survey towards 47 Class II disks in the Taurus-Auriga region. Our observations made 12 independent samples of flux densities over the 200–400 GHz frequency range. We tightly constrained the spectral indices of most sources to an incredibly narrow range of 2.0 ± 0.2; only a handful of spatially resolved extended (e.g., diameter >250 au) disks present larger spectral indices. The simplest interpretation for this result is that the (sub)millimeter luminosities of all of the observed target sources are dominated by very optically thick (e.g., τ >10) dust thermal emission. This interpretation, if true, may imply that the previous measurements based on an optically thin assumption have systematically underestimated dust mass by at least one order of magnitude. Our population synthesis based on a optically thick, uniform dust slab model prefers a maximum grain size (a max ) smaller than 0.1 mm. This may indicate that the dust grain growth outside the water snowline may be limited by the bouncing/fragmentation barriers and that the ice-coated dust grain may be less sticky than we used to consider. In the Class II disks, the dust mass budget outside of the water snowline may be largely retained instead of being mostly consumed by planet formation. While Class II disks still possess sufficient dust masses to feed planet formation at a later time, whether or not dust coagulation and planet formation can be efficient or natural outside of the water snowline appear questionable.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:35:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:35:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents1 Introduction (1)
2 SMA 200–400 GHz Taurus-Auriga Survey (8)
2.1 Observations (8)
2.1.1 Target source selection (8)
2.1.2 Technical details and calibration strategy (9)
2.2 Data Reduction (13)
2.2.1 Routine Calibration (13)
2.2.2 Gain Phase Self-calibration (16)
2.2.3 Imaging (19)
2.2.4 Measuring Flux Densities (26)
2.2.5 SED fitting (29)
2.3 Results (34)
2.3.1 Individual sources (34)
2.3.2 Statistical results (36)
2.4 Discussion (41)
2.4.1 Qualitative interpretation (41)
2.4.2 Radiative transfer models (45)
2.4.3 Physical implication (52)
2.5 Conclusion (55)
2.6 Source comments, observation strategy and issues (57)
2.6.1 Class II Taurus disks (57)
2.6.2 Observing loop and target source group (59)
2.6.3 Issues in the observations (59)
3 SMA 200–400 GHz Ophiuchus survey (62)
3.1 Observations (62)
3.1.1 Sample selection (62)
3.1.2 Technical details (63)
Data Reduction (66)
3.2.1 Routine Calibration (66)
3.2.2 Imaging (68)
3.2.3 Measuring Flux Densities (71)
Results and issues (72)
3.3.1 Images and 200–420 GHz SED (72)
3.3.2 Missing flux issue (74)
Future work (76)
3.4.1 Short-spacing observations (76)
3.4.2 Analysis plan (77)
4 JVLA Taurus-Auriga survey (78)
4.1 Observations (78)
4.1.1 Sample selection (78)
4.1.2 Technical details (79)
4.2 Future worK (81)
Bibliography (84)
Appendices (101)
A Figures (102)
A.1 Self-calibration solutions at each sideband (102)
A.2 Clean images at each sideband (115)
A.3 Visibility profiles and fitting (120)
A.4 Flux measurements in different epoch (157)
B Scripts (161)
B.1 Grouping Algorithm (161)
B.2 Observing script (167)
B.3 Calibration script (174)
B.4 Self-calibration script (222)
C Installation (237)
C.1 CentOS Stream 9 (237)
C.2 Disk Partition (238)
C.3 Interactive Data Language (IDL) (239)
C.4 MIR Software Package and MIRIAD (239)
C.5 SSL–VPN (240)
-
dc.language.isoen-
dc.subject原行星盤zh_TW
dc.subject電波連續輻射zh_TW
dc.subject行星形成zh_TW
dc.subject前主序星zh_TW
dc.subject星周塵埃zh_TW
dc.subjectCircumstellar dusten
dc.subjectPlanet formationen
dc.subjectRadio continuum emissionen
dc.subjectPre-main sequenceen
dc.subjectProtoplanetary disksen
dc.title利用 SMA 200–400 GHz 勘測約束 Class II 原行星盤的塵埃譜指數zh_TW
dc.titleA tightened constraint on the dust spectral index in Class II protoplanetary disks using the SMA 200–400 GHz surveyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor朱有花zh_TW
dc.contributor.coadvisorYou-Hua Chuen
dc.contributor.oralexamcommittee李景輝;平野尚美zh_TW
dc.contributor.oralexamcommitteeChin-Fei Lee;Naomi Hiranoen
dc.subject.keyword星周塵埃,原行星盤,前主序星,行星形成,電波連續輻射,zh_TW
dc.subject.keywordCircumstellar dust,Protoplanetary disks,Pre-main sequence,Planet formation,Radio continuum emission,en
dc.relation.page240-
dc.identifier.doi10.6342/NTU202303550-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2024-08-08-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf54.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved