請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89888
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃建璋 | zh_TW |
dc.contributor.advisor | Jian-Jang Huang | en |
dc.contributor.author | 張宇翔 | zh_TW |
dc.contributor.author | Yu-Hsiang Chang | en |
dc.date.accessioned | 2023-09-22T16:33:13Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | [1] S. P. DenBaars et al., "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays," Acta Materialia, vol. 61, no. 3, pp. 945-951, 2013, doi: 10.1016/j.actamat.2012.10.042.
[2] Z. Y. Fan, J. Y. Lin, and H. X. Jiang, "III-nitride micro-emitter arrays: development and applications," Journal of Physics D: Applied Physics, vol. 41, no. 9, 2008, doi: 10.1088/0022-3727/41/9/094001. [3] H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, "Liquid crystal display and organic light-emitting diode display: present status and future perspectives," Light Sci Appl, vol. 7, p. 17168, 2018, doi: 10.1038/lsa.2017.168. [4] J.-I. Chyi et al., "Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications," presented at the Gallium Nitride Materials and Devices XII, 2017. [5] S. Zhu et al., "Characteristics of GaN-on-Si Green Micro-LED for Wide Color Gamut Display and High-Speed Visible Light Communication," ACS Photonics, vol. 10, no. 1, pp. 92-100, 2022, doi: 10.1021/acsphotonics.2c01028. [6] Z. Chen, S. Yan, and C. Danesh, "MicroLED technologies and applications: characteristics, fabrication, progress, and challenges," Journal of Physics D: Applied Physics, vol. 54, no. 12, 2021, doi: 10.1088/1361-6463/abcfe4. [7] T. Wu et al., "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology," Applied Sciences, vol. 8, no. 9, 2018, doi: 10.3390/app8091557. [8] Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light Sci Appl, vol. 9, p. 105, 2020, doi: 10.1038/s41377-020-0341-9. [9] P. Tian et al., "Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes," Applied Physics Letters, vol. 101, no. 23, 2012, doi: 10.1063/1.4769835. [10] R. X. G. Ferreira et al., "High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications," IEEE Photonics Technology Letters, vol. 28, no. 19, pp. 2023-2026, 2016, doi: 10.1109/lpt.2016.2581318. [11] S. Rajbhandari et al., "A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications," Semiconductor Science and Technology, vol. 32, no. 2, 2017, doi: 10.1088/1361-6641/32/2/023001. [12] W. C. Miao et al., "Microdisplays: Mini‐LED, Micro‐OLED, and Micro‐LED," Advanced Optical Materials, 2023, doi: 10.1002/adom.202300112. [13] F. Templier, "GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems," Journal of the Society for Information Display, vol. 24, no. 11, pp. 669-675, 2016, doi: 10.1002/jsid.516. [14] Y. Cheng-Yang and L. Xiao-Wu, "Synthesis, Crystal Structure and Band Structure of Sm3In5," Chinese Journal of Structural Chemistry, vol. 30, pp. 384-389, 01/01 2011. [15] T. Langer et al., "Origin of the “green gap”: Increasing nonradiative recombination in indium‐rich GaInN/GaN quantum well structures," physica status solidi c, vol. 8, no. 7-8, pp. 2170-2172, 2011, doi: 10.1002/pssc.201001051. [16] M. S. Wong et al., "High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition," Opt Express, vol. 26, no. 16, pp. 21324-21331, Aug 6 2018, doi: 10.1364/OE.26.021324. [17] M. S. Wong et al., "Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation," Applied Physics Express, vol. 12, no. 9, 2019, doi: 10.7567/1882-0786/ab3949. [18] Y. K. Jin, H. Y. Chiang, K. H. Lin, C. A. Lee, and J. J. Huang, "Luminescence efficiency improvement of small-size micro light-emitting diodes by a digital etching technology," Opt Lett, vol. 47, no. 23, pp. 6277-6280, Dec 1 2022, doi: 10.1364/OL.476967. [19] Y.-H. Sun et al., "Optical Properties of the Partially Strain Relaxed InGaN/GaN Light-Emitting Diodes Induced by p-Type GaN Surface Texturing," IEEE Electron Device Letters, vol. 32, no. 2, pp. 182-184, 2011, doi: 10.1109/led.2010.2093503. [20] S. Liu et al., "Enhanced photoelectric performance of GaN-based Micro-LEDs by ion implantation," Optical Materials, vol. 121, 2021, doi: 10.1016/j.optmat.2021.111579. [21] Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, "Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN," Opt Lett, vol. 46, no. 20, pp. 5092-5095, Oct 15 2021, doi: 10.1364/OL.438009. [22] F. Xu, Y. Tan, Z. Xie, and B. Zhang, "Implantation energy- and size-dependent light output of enhanced-efficiency micro-LED arrays fabricated by ion implantation," Opt Express, vol. 29, no. 5, pp. 7757-7766, Mar 1 2021, doi: 10.1364/OE.421272. [23] H. Xiao, "Ion Implantation," in Introduction to Semiconductor Manufacturing Technology, Second Edition: Society of Photo-Optical Instrumentation Engineers, 2013, ch. 8. [24] S. K. Ghandhi, "VLSI Fabrication Principles-Silicon and Gallium Arsenide," pp. 371-372, 1994. [25] S. Sidikejiang et al., "Low-temperature internal quantum efficiency of GaInN/GaN quantum wells under steady-state conditions," Semiconductor Science and Technology, vol. 37, no. 3, 2022, doi: 10.1088/1361-6641/ac4b89. [26] I. E. Titkov et al., "Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness Light-Emitting Diodes," IEEE Journal of Quantum Electronics, vol. 50, no. 11, pp. 911-920, 2014, doi: 10.1109/jqe.2014.2359958. [27] Y. C. Chiu, "Designing Efficient Micro Light Emitting Diodes for Display," 2021. [28] J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, "White light-emitting diodes: History, progress, and future," Laser & Photonics Reviews, vol. 11, no. 2, 2017, doi: 10.1002/lpor.201600147. [29] Y. D. Qi, H. Liang, D. Wang, Z. D. Lu, W. Tang, and K. M. Lau, "Comparison of blue and green InGaN∕GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 86, no. 10, 2005, doi: 10.1063/1.1866634. [30] H. Yang et al., "Power-Dependent Optical Characterization of the InGaN/GaN-Based Micro-Light-Emitting-Diode (LED) in High Spatial Resolution," Nanomaterials (Basel), vol. 13, no. 13, Jul 6 2023, doi: 10.3390/nano13132014. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89888 | - |
dc.description.abstract | 微發光二極體(micro-LED)在近年來逐漸受到重視,因其與傳統的液晶顯示器(LCD)、次毫米發光二極體(mini-LED)、有機發光二極體(OLED)相比有不少的優勢,例如高亮度、高對比、高解析度及反應時間快、更節能等特性。此外,微發光二極體的尺寸約比次毫米發光二極體還小約0.1毫米,已經達到了肉眼難以分辨的程度,因此可以將三原色的晶粒拼成一個像素點,不需要濾光片或液晶層即可達到更高的解析度。但隨著微發光二極體的尺寸不斷縮小,其面臨著發光效率大幅降低的問題。再者,由於多重量子井中氮化銦鎵(InGaN)及氮化鎵(GaN)晶格差異所產生的應力,會使微發光二極體在低電流時有嚴重的量子侷限斯塔克效應(QCSE),隨著注入電流提升,會使微發光二極體產生波長藍移。為了應對這些問題,本篇論文利用離子佈植技術將高濃度的離子注入綠光微發光二極體的側壁,進而增加側壁電阻並減少漏電流產生,接著利用表面粗化技術降低波長位移的問題。
本篇論文顯示了離子佈植顯著改善微發光二極體的電學特性,導致正向電流顯著增加,反向電流顯著減少。此外,在光學特性上也有顯著提升。以離子佈植能量為60keV且發光面積為10 × 10 μm2為例,其與沒有進行離子佈植且發光面積為100 × 100 μm2的元件相比,僅下降了21.299%的光輸出功率密度;而與沒有進行離子佈植且發光面積相同(10 × 10 μm2)的元件相比,其外部量子效率(IQE)的峰值高了1.22倍。此外,利用表面粗化技術,可以將平均波長位移減少0.74奈米。本篇論文的研究成果展示了將離子佈植及表面粗化技術相結合以提高微發光二極體表現的巨大潛力。 | zh_TW |
dc.description.abstract | Micro-LED displays present a pressing issue of reduced optical output efficiency as LED chip sizes continue to shrink. In order to address this challenge, we propose an innovative approach using ion implantation to deliberately induce sidewall damage in LEDs, thereby enhancing sidewall resistance and minimizing leakage current. Our comprehensive study reveals that ion implantation significantly improves the electrical properties of micro-LEDs, resulting in notable increases in forward current and reductions in reverse leakage. These improvements stem from the successful suppression of sidewall defects.
Specifically, our investigation on the A-10 micro-LED demonstrates only a modest 21.299% decrease in output power density compared to the N-100, while concurrently exhibiting a 1.22 times higher peak internal quantum efficiency (IQE) value than the N-10. Furthermore, the introduction of surface texture proves to be an effective method for reducing the average wavelength shift by 0.74nm, signifying a step forward in optimizing the optical characteristics of micro-LEDs. Our findings highlight the promising potential of combining ion implantation and surface texture techniques to enhance the performance of micro-LED displays. By overcoming the efficiency challenges, micro-LEDs can emerge as a more viable solution for high-performance displays and various optoelectronic applications. The successful implementation of these techniques can pave the way for next-generation display technologies, providing improved visual experiences and energy-efficient solutions for diverse industries. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:33:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:33:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 INTRODUCTION 1 1.1 Overview of Micro-LEDs 1 1.2 Research motivation 2 1.3 Thesis outline 4 Chapter 2 Properties of Micro-LEDs with Ion Implantation treatment 5 2.1 Introduction of Ion Implantation treatment 5 2.1.1 Background of ion implantation 6 2.1.2 Mechanism and system of ion implantation 7 2.1.3 Ion implantation simulation 12 2.2 Characteristics of Micro-LEDs with Ion Implantation 18 2.2.1 Fabrication of Micro-LEDs with Ion Implantation 18 2.2.2 Electrical Properties of Micro-LEDs with Ion Implantation 23 2.2.3 Optical Properties of Micro-LEDs with Ion Implantation 27 2.3 Summary 35 Chapter 3 Properties of Micro-LEDs with Ion Implantation treatment and Surface Texture 36 3.1 Introduction of Surface Texture 36 3.2 Characteristics of Micro-LEDs with Ion Implantation and Surface Texture 37 3.2.1 Fabrication of Micro-LEDs with Ion Implantation and Surface Texture 37 3.2.2 Electrical Properties of Micro-LEDs with Ion Implantation and Surface Texture 39 3.2.3 Optical Properties of Micro-LEDs with Ion Implantation and Surface Texture 42 Chapter 4 Conclusions 45 REFERENCES 48 | - |
dc.language.iso | en | - |
dc.title | 基於表面粗化技術應用離子佈植提升InGaN/GaN綠色微發光二極體之發光效率 | zh_TW |
dc.title | Enhanced Output Power Efficiency in InGaN/GaN-based Green Micro Light-Emitting Diodes by Ion Implantation based on Surface Texture | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 洪瑞華;賴韋志;吳肇欣 | zh_TW |
dc.contributor.oralexamcommittee | Ray-Hua Horng;Wei-Chi Lai;Chao-Hsin Wu | en |
dc.subject.keyword | 微發光二極體,離子佈植,表面粗化, | zh_TW |
dc.subject.keyword | Micro-LED,ion implantation,surface texture, | en |
dc.relation.page | 49 | - |
dc.identifier.doi | 10.6342/NTU202303078 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
dc.date.embargo-lift | 2028-08-09 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 6.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。