Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州zh_TW
dc.contributor.advisorYao-Joe Yangen
dc.contributor.author林沛亭zh_TW
dc.contributor.authorPei-Ting Linen
dc.date.accessioned2023-09-22T16:31:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationM. K. Mishra, V. Dubey, P. Mishra, and I. Khan, "MEMS technology: A review," Journal of Engineering Research and Reports, pp. 1-24, 2019.
C. Majidi, “Soft robotics: a perspective—current trends and prospects for the future,” Soft robotics, vol. 1, no. 1, pp. 5-11, 2014.
Y. Kim, and X. Zhao, “Magnetic soft materials and robots,” Chemical reviews, vol. 122, no. 5, pp. 5317-5364, 2022.
H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, “Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment,” Advanced Materials, vol. 32, no. 15, pp. 1901924, 2020.
D. Rus, and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467-475, 2015.
E. Sachyani Keneth, A. Kamyshny, M. Totaro, L. Beccai, and S. Magdassi, “3D printing materials for soft robotics,” Advanced Materials, vol. 33, no. 19, pp. 2003387, 2021.
H. Wang, M. Totaro, and L. Beccai, “Toward perceptive soft robots: Progress and challenges,” Advanced Science, vol. 5, no. 9, pp. 1800541, 2018.
D. Marchese, R. Tedrake, and D. Rus, “Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator,” The International Journal of Robotics Research, vol. 35, no. 8, pp. 1000-1019, 2016.
P. E. Dupont, B. J. Nelson, M. Goldfarb, B. Hannaford, A. Menciassi, M. K. O’Malley, N. Simaan, P. Valdastri, and G.-Z. Yang, “A decade retrospective of medical robotics research from 2010 to 2020,” Science robotics, vol. 6, no. 60, pp. eabi8017, 2021.
M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, “Soft robotics technologies to address shortcomings in today's minimally invasive surgery: the STIFF-FLOP approach,” Soft robotics, vol. 1, no. 2, pp. 122-131, 2014.
M. R. O'Neill, E. Acome, S. Bakarich, S. K. Mitchell, J. Timko, C. Keplinger, and R. F. Shepherd, “Rapid 3D printing of electrohydraulic (HASEL) tentacle actuators,” Advanced Functional Materials, vol. 30, no. 40, pp. 2005244, 2020.
Y. Li, Y. Chen, T. Ren, Y. Li, and S. H. Choi, “Precharged pneumatic soft actuators and their applications to untethered soft robots,” Soft robotics, vol. 5, no. 5, pp. 567-575, 2018.
L. Zhou, L. Ren, Y. Chen, S. Niu, Z. Han, and L. Ren, “Bio‐inspired soft grippers based on impactive gripping,” Advanced Science, vol. 8, no. 9, pp. 2002017, 2021.
J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Advanced materials, vol. 30, no. 29, pp. 1707035, 2018.
N. El-Atab, R. B. Mishra, F. Al-Modaf, L. Joharji, A. A. Alsharif, H. Alamoudi, M. Diaz, N. Qaiser, and M. M. Hussain, “Soft actuators for soft robotic applications: A review,” Advanced Intelligent Systems, vol. 2, no. 10, pp. 2000128, 2020.
Apsite, S. Salehi, and L. Ionov, “Materials for smart soft actuator systems,” Chemical Reviews, vol. 122, no. 1, pp. 1349-1415, 2021.
Z. Shen, F. Chen, X. Zhu, K.-T. Yong, and G. Gu, “Stimuli-responsive functional materials for soft robotics,” Journal of Materials Chemistry B, vol. 8, no. 39, pp. 8972-8991, 2020.
M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, and M. Sitti, “Soft actuators for real-world applications,” Nature Reviews Materials, vol. 7, no. 3, pp. 235-249, 2022.
Bishop-Moser, and S. Kota, “Design and modeling of generalized fiber-reinforced pneumatic soft actuators,” IEEE Transactions on Robotics, vol. 31, no. 3, pp. 536-545, 2015.
B. Gorissen, D. Reynaerts, S. Konishi, K. Yoshida, J. W. Kim, and M. De Volder, “Elastic inflatable actuators for soft robotic applications,” Advanced Materials, vol. 29, no. 43, pp. 1604977, 2017.
Y. Xia, Y. He, F. Zhang, Y. Liu, and J. Leng, “A review of shape memory polymers and composites: mechanisms, materials, and applications,” Advanced materials, vol. 33, no. 6, pp. 2000713, 2021.
C. Y. Li, S. Y. Zheng, X. P. Hao, W. Hong, Q. Zheng, and Z. L. Wu, “Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels,” Science Advances, vol. 8, no. 15, pp. eabm9608, 2022.
H. Guo, A. Priimagi, and H. Zeng, “Optically controlled latching and launching in soft actuators,” Advanced Functional Materials, vol. 32, no. 17, pp. 2108919, 2022.
Y. Chi, Y. Li, Y. Zhao, Y. Hong, Y. Tang, and J. Yin, “Bistable and multistable actuators for soft robots: Structures, materials, and functionalities,” Advanced Materials, vol. 34, no. 19, pp. 2110384, 2022.
Elsheikh, “Bistable morphing composites for energy-harvesting applications,” Polymers, vol. 14, no. 9, pp. 1893, 2022.
Qiu, J. H. Lang, and A. H. Slocum, “A curved-beam bistable mechanism,” Journal of microelectromechanical systems, vol. 13, no. 2, pp. 137-146, 2004.
Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nature nanotechnology, vol. 13, no. 1, pp. 11-18, 2018.
W.-M. Zhang, H. Yan, Z.-K. Peng, and G. Meng, “Electrostatic pull-in instability in MEMS/NEMS: A review,” Sensors and Actuators A: Physical, vol. 214, pp. 187-218, 2014.
S. Novelino, Q. Ze, S. Wu, G. H. Paulino, and R. Zhao, “Untethered control of functional origami microrobots with distributed actuation,” Proceedings of the National Academy of Sciences, vol. 117, no. 39, pp. 24096-24101, 2020.
J. Li, X. Zhou, and Z. Liu, “Recent advances in photoactuators and their applications in intelligent bionic movements,” Advanced Optical Materials, vol. 8, no. 18, pp. 2000886, 2020.
Q. Ze, S. Wu, J. Nishikawa, J. Dai, Y. Sun, S. Leanza, C. Zemelka, L. S. Novelino, G. H. Paulino, and R. R. Zhao, “Soft robotic origami crawler,” Science advances, vol. 8, no. 13, pp. eabm7834, 2022.
L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, "Soft actuators for small‐scale robotics," Advanced materials, vol. 29, no. 13, p. 1603483, 2017.
W. Hu, G. Z. Lum, M. Mastrangeli, and M. Sitti, “Small-scale soft-bodied robot with multimodal locomotion,” Nature, vol. 554, no. 7690, pp. 81-85, 2018.
Y. Dong, L. Wang, N. Xia, Z. Yang, C. Zhang, C. Pan, D. Jin, J. Zhang, C. Majidi, and L. Zhang, “Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules,” Science advances, vol. 8, no. 25, pp. eabn8932, 2022.
H. Meng and G. Li, "A review of stimuli-responsive shape memory polymer composites," Polymer, vol. 54, no. 9, pp. 2199-2221, 2013.
Q. Ze, X. Kuang, S. Wu, J. Wong, S. M. Montgomery, R. Zhang, J. M. Kovitz, F. Yang, H. J. Qi, and R. Zhao, “Magnetic shape memory polymers with integrated multifunctional shape manipulation,” Advanced Materials, vol. 32, no. 4, pp. 1906657, 2020.
Rogóż, K. Dradrach, C. Xuan, and P. Wasylczyk, "A millimeter‐scale snail robot based on A light‐powered liquid crystal elastomer continuous actuator," Macromolecular rapid communications, vol. 40, no. 16, p. 1900279, 2019.
M. Zadan, D. K. Patel, A. P. Sabelhaus, J. Liao, A. Wertz, L. Yao, and C. Majidi, “Liquid crystal elastomer with integrated soft thermoelectrics for shape memory actuation and energy harvesting,” Advanced Materials, vol. 34, no. 23, pp. 2200857, 2022.
T. Qiu, T.-C. Lee, A. G. Mark, K. I. Morozov, R. Münster, O. Mierka, S. Turek, A. M. Leshansky, and P. Fischer, "Swimming by reciprocal motion at low Reynolds number," Nature communications, vol. 5, no. 1, pp. 1-8, 2014.
T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, and E. Diller, “Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions,” Science Robotics, vol. 4, no. 29, pp. eaav4494, 2019.
E. Diller, J. Zhuang, G. Zhan Lum, M. R. Edwards, and M. Sitti, “Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming,” Applied Physics Letters, vol. 104, no. 17, 2014.
R. H. Soon, Z. Yin, M. A. Dogan, N. O. Dogan, M. E. Tiryaki, A. C. Karacakol, A. Aydin, P. Esmaeili-Dokht, and M. Sitti, “Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications,” Nature Communications, vol. 14, no. 1, pp. 3320, 2023.
X. Li, Z. Zhang, M. Sun, H. Wu, Y. Zhou, H. Wu, and S. Jiang, “A magneto-active soft gripper with adaptive and controllable motion,” Smart Materials and Structures, vol. 30, no. 1, pp. 015024, 2020.
J.-C. Kuo, H.-W. Huang, S.-W. Tung, and Y.-J. Yang, “A hydrogel-based intravascular microgripper manipulated using magnetic fields,” Sensors and Actuators A: Physical, vol. 211, pp. 121-130, 2014.
J. Xiong, J. Chen, and P. S. Lee, “Functional fibers and fabrics for soft robotics, wearables, and human–robot interface,” Advanced Materials, vol. 33, no. 19, pp. 2002640, 2021.
Z. Li, Q. Fan, and Y. Yin, “Colloidal self-assembly approaches to smart nanostructured materials,” Chemical reviews, vol. 122, no. 5, pp. 4976-5067, 2021.
L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft actuators for small‐scale robotics,” Advanced materials, vol. 29, no. 13, pp. 1603483, 2017.
R. V. Raghavan, J. Qin, L. Y. Yeo, J. R. Friend, K. Takemura, S. Yokota, and K. Edamura, "Electrokinetic actuation of low conductivity dielectric liquids," Sensors and Actuators B: Chemical, vol. 140, no. 1, pp. 287-294, 2009.
Y. Wang, U. Gupta, N. Parulekar, and J. Zhu, “A soft gripper of fast speed and low energy consumption,” Science China Technological Sciences, vol. 62, pp. 31-38, 2019.
E. Palleau, D. Morales, M. D. Dickey, and O. D. Velev, “Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting,” Nature communications, vol. 4, no. 1, pp. 2257, 2013.
W.-Y. Wang, B.-Y. Lin, Y.-P. Liao, and Y.-J. Yang, “Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators,” Polymers, vol. 14, no. 15, pp. 2997, 2022.
W. J. Zheng, N. An, J. H. Yang, J. Zhou, and Y. M. Chen, “Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics,” ACS applied materials & interfaces, vol. 7, no. 3, pp. 1758-1764, 2015.
Le Duigou, G. Chabaud, F. Scarpa, and M. Castro, “Bioinspired electro‐thermo‐hygro reversible shape‐changing materials by 4D printing,” Advanced Functional Materials, vol. 29, no. 40, pp. 1903280, 2019.
W. Liu, L.-X. Guo, B.-P. Lin, X.-Q. Zhang, Y. Sun, and H. Yang, "Near-infrared responsive liquid crystalline elastomers containing photothermal conjugated polymers," Macromolecules, vol. 49, no. 11, pp. 4023-4030, 2016.
Potekhina, and C. Wang, “Liquid Crystal Elastomer Based Thermal Microactuators and Photothermal Microgrippers Using Lateral Bending Beams,” Advanced Materials Technologies, vol. 7, no. 10, pp. 2101732, 2022.
Y. Li, Y. Liu, and D. Luo, “Polarization dependent light‐driven liquid crystal elastomer actuators based on photothermal effect,” Advanced Optical Materials, vol. 9, no. 5, pp. 2001861, 2021.
Q. He, Z. Wang, Y. Wang, Z. Song, and S. Cai, “Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator,” ACS applied materials & interfaces, vol. 12, no. 31, pp. 35464-35474, 2020.
Q. He, Z. Wang, Y. Wang, A. Minori, M. T. Tolley, and S. Cai, “Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation,” Science advances, vol. 5, no. 10, pp. eaax5746, 2019.
H. Liu, H. Tian, J. Shao, Z. Wang, X. Li, C. Wang, and X. Chen, “An electrically actuated soft artificial muscle based on a high-performance flexible electrothermal film and liquid-crystal elastomer,” ACS Applied Materials & Interfaces, vol. 12, no. 50, pp. 56338-56349, 2020.
J. H. Lee, J. Bae, J. H. Hwang, M. Y. Choi, Y. S. Kim, S. Park, J. H. Na, D. G. Kim, and S. k. Ahn, “Robust and reprocessable artificial muscles based on liquid crystal elastomers with dynamic thiourea bonds,” Advanced Functional Materials, vol. 32, no. 13, pp. 2110360, 2022.
J. T. Overvelde, T. Kloek, J. J. D’haen, and K. Bertoldi, “Amplifying the response of soft actuators by harnessing snap-through instabilities,” Proceedings of the National Academy of Sciences, vol. 112, no. 35, pp. 10863-10868, 2015.
C. Y. Li, S. Y. Zheng, X. P. Hao, W. Hong, Q. Zheng, and Z. L. Wu, “Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels,” Science Advances, vol. 8, no. 15, pp. eabm9608, 2022.
K. Peng, Y. Zhao, S. Shahab, and R. Mirzaeifar, “Ductile shape-memory polymer composite with enhanced shape recovery ability,” ACS Applied Materials & Interfaces, vol. 12, no. 52, pp. 58295-58300, 2020.
Pal, and M. Sitti, “Programmable mechanical devices through magnetically tunable bistable elements,” Proceedings of the National Academy of Sciences, vol. 120, no. 15, pp. e2212489120, 2023.
V. Ramachandran, M. D. Bartlett, J. Wissman, and C. Majidi, “Elastic instabilities of a ferroelastomer beam for soft reconfigurable electronics,” Extreme Mechanics Letters, vol. 9, pp. 282-290, 2016.
J.-S. Koh, E. Yang, G.-P. Jung, S.-P. Jung, J. H. Son, S.-I. Lee, P. G. Jablonski, R. J. Wood, H.-Y. Kim, and K.-J. Cho, “Jumping on water: Surface tension–dominated jumping of water striders and robotic insects,” Science, vol. 349, no. 6247, pp. 517-521, 2015.
S. Wu, G. L. Baker, J. Yin, and Y. Zhu, “Fast thermal actuators for soft robotics,” Soft Robotics, vol. 9, no. 6, pp. 1031-1039, 2022.
Y. Jiang, L. M. Korpas, and J. R. Raney, “Bifurcation-based embodied logic and autonomous actuation,” Nature communications, vol. 10, no. 1, pp. 128, 2019.
M. R. Shankar, M. L. Smith, V. P. Tondiglia, K. M. Lee, M. E. McConney, D. H. Wang, L.-S. Tan, and T. J. White, “Contactless, photoinitiated snap-through in azobenzene-functionalized polymers,” Proceedings of the National Academy of Sciences, vol. 110, no. 47, pp. 18792-18797, 2013.
H. Shao, S. Wei, X. Jiang, D. P. Holmes, and T. K. Ghosh, “Bioinspired electrically activated soft bistable actuators,” Advanced Functional Materials, vol. 28, no. 35, pp. 1802999, 2018.
M. Runciman, A. Darzi, and G. P. Mylonas, "Soft robotics in minimally invasive surgery," Soft robotics, vol. 6, no. 4, pp. 423-443, 2019.
X. Liang, Y. Sun, and H. Ren, "A flexible fabrication approach toward the shape engineering of microscale soft pneumatic actuators," IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 165-170, 2016.
J. A. Faber, J. P. Udani, K. S. Riley, A. R. Studart, and A. F. Arrieta, “Dome‐Patterned Metamaterial Sheets,” Advanced Science, vol. 7, no. 22, pp. 2001955, 2020.
J. Le Bideau, L. Viau, and A. Vioux, “Ionogels, ionic liquid based hybrid materials,” Chemical Society Reviews, vol. 40, no. 2, pp. 907-925, 2011.
L. Zhang, D. Jiang, T. Dong, R. Das, D. Pan, C. Sun, Z. Wu, Q. Zhang, C. Liu, and Z. Guo, “Overview of ionogels in flexible electronics,” The Chemical Record, vol. 20, no. 9, pp. 948-967, 2020.
C. Hopson, M. M. Villar-Chavero, J. C. Domínguez, M. V. Alonso, M. Oliet, and F. Rodriguez, “Cellulose ionogels, a perspective of the last decade: A review,” Carbohydrate Polymers, vol. 274, pp. 118663, 2021.
B. Yiming, X. Guo, N. Ali, N. Zhang, X. Zhang, Z. Han, Y. Lu, Z. Wu, X. Fan, and Z. Jia, “Ambiently and mechanically stable ionogels for soft ionotronics,” Advanced Functional Materials, vol. 31, no. 33, pp. 2102773, 2021.
Z. Luo, W. Li, J. Yan, and J. Sun, “Roles of ionic liquids in adjusting nature of ionogels: A mini review,” Advanced Functional Materials, vol. 32, no. 32, pp. 2203988, 2022.
S. Zhuo, C. Song, Q. Rong, T. Zhao, and M. Liu, “Shape and stiffness memory ionogels with programmable pressure-resistance response,” Nature Communications, vol. 13, no. 1, pp. 1743, 2022.
L. Sun, S. Chen, Y. Guo, J. Song, L. Zhang, L. Xiao, Q. Guan, and Z. You, “Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range,” Nano Energy, vol. 63, pp. 103847, 2019.
Z. Wang, J. Zhang, J. Liu, S. Hao, H. Song, and J. Zhang, “3D printable, highly stretchable, superior stable ionogels based on poly (ionic liquid) with hyperbranched polymers as macro-cross-linkers for high-performance strain sensors,” ACS Applied Materials & Interfaces, vol. 13, no. 4, pp. 5614-5624, 2021.
L. Xu, Z. Huang, Z. Deng, Z. Du, T. L. Sun, Z. H. Guo, and K. Yue, “A transparent, highly stretchable, solvent‐resistant, recyclable multifunctional ionogel with underwater self‐healing and adhesion for reliable strain sensors,” Advanced Materials, vol. 33, no. 51, pp. 2105306, 2021.
Z. Liu, H. Cheng, Q. Le, R. Chen, J. Li, and J. Ouyang, “Giant thermoelectric properties of ionogels with cationic doping,” Advanced Energy Materials, vol. 12, no. 22, pp. 2200858, 2022.
J. B. Goodenough, and K.-S. Park, “The Li-ion rechargeable battery: a perspective,” Journal of the American Chemical Society, vol. 135, no. 4, pp. 1167-1176, 2013.
K. Sun, J. Xin, Z. Wang, S. Feng, Z. Wang, R. Fan, H. Liu, and Z. Guo, “Weakly negative permittivity and low frequency dispersive behavior in graphene/epoxy metacomposites,” Journal of Materials Science: Materials in Electronics, vol. 30, pp. 14745-14754, 2019.
Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Grätzel, “Hydrophobic, highly conductive ambient-temperature molten salts,” Inorganic chemistry, vol. 35, no. 5, pp. 1168-1178, 1996.
L. Zhang, D. Jiang, T. Dong, R. Das, D. Pan, C. Sun, Z. Wu, Q. Zhang, C. Liu, and Z. Guo, “Overview of ionogels in flexible electronics,” The Chemical Record, vol. 20, no. 9, pp. 948-967, 2020.
J. Prakash, S. Khan, S. Chauhan, and A. Biradar, “Metal oxide-nanoparticles and liquid crystal composites: A review of recent progress,” Journal of Molecular Liquids, vol. 297, pp. 112052, 2020.
N. D. Mermin, "The topological theory of defects in ordered media," Reviews of Modern Physics, vol. 51, no. 3, p. 591, 1979.
D. Gennes, Pierre-Gilles, and J. Prost, "The physics of liquid crystals," ed: ford University Press, Oxford, 1975.
Y. Wang, J. Liu, and S. Yang, "Multi-functional liquid crystal elastomer composites," Applied Physics Reviews, vol. 9, no. 1, p. 011301, 2022.
J. Collings and M. Hird, in Introduction to liquid crystals: chemistry and physics, 1997.
T. S. Chung, “The recent developments of thermotropic liquid crystalline polymers,” Polymer Engineering & Science, vol. 26, no. 13, pp. 901-919, 1986.
Annapooranan, Y. Wang, and S. Cai, “Highly durable and tough liquid crystal elastomers,” ACS Applied Materials & Interfaces, vol. 14, no. 1, pp. 2006-2014, 2022.
Azoug, V. Vasconcellos, J. Dooling, M. Saed, C. Yakacki, and T. Nguyen, “Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers,” Polymer, vol. 98, pp. 165-171, 2016.
D. R. Merkel, R. K. Shaha, C. M. Yakacki, and C. P. Frick, "Mechanical energy dissipation in polydomain nematic liquid crystal elastomers in response to oscillating loading," Polymer, vol. 166, pp. 148-154, 2019.
C. E. Hoyle, and C. N. Bowman, “Thiol–ene click chemistry,” Angewandte Chemie International Edition, vol. 49, no. 9, pp. 1540-1573, 2010.
Wu, J. Huang, S. Jing, H. Xie, and S. Zhou, “Biodegradable Shape‐Memory Ionogels as Green and Adaptive Wearable Electronics Toward Physical Rehabilitation,” Advanced Functional Materials, pp. 2303292, 2023.
X. Fan, S. Liu, Z. Jia, J. J. Koh, J. C. C. Yeo, C.-G. Wang, N. E. Surat'Man, X. J. Loh, J. Le Bideau, and C. He, “Ionogels: recent advances in design, material properties and emerging biomedical applications,” Chemical Society Reviews, 2023.
Li, F. Liu, X. Yang, S. Hao, Y. Cheng, S. Li, H. Zhu, and H. Song, “Muscle-mimetic highly tough, conductive, and stretchable poly (ionic liquid) liquid crystalline ionogels with ultrafast self-healing, super adhesive, and remarkable shape memory properties,” ACS Applied Materials & Interfaces, vol. 14, no. 25, pp. 29261-29272, 2022.
L.-Y. Wan, R.-M. Han, and Z.-H. Wan, “The molecular mechanism of the thermo-responsive shape memory effect of self-assembled poly-{2, 5-bis [(4-butoxyphenyl) oxycarbonyl] styrene} fiber,” Iranian Polymer Journal, vol. 25, pp. 79-88, 2016.
X. Zhu, H. Zhang, and J. Wu, “Chemiresistive ionogel sensor array for the detection and discrimination of volatile organic vapor,” Sensors and Actuators B: Chemical, vol. 202, pp. 105-113, 2014.
H. Herrmann, B. Derrida, and J. Vannimenus, "Superconductivity exponents in two-and three-dimensional percolation," Physical Review B, vol. 30, no. 7, p. 4080, 1984.
G. Ruschau, S. Yoshikawa, and R. Newnham, "Resistivities of conductive composites," Journal of applied physics, vol. 72, no. 3, pp. 953-959, 1992.
D. Stauffer and A. Aharony, Introduction to percolation theory. CRC press, 2018.
D. Stauffer, “Scaling theory of percolation clusters,” Physics reports, vol. 54, no. 1, pp. 1-74, 1979.
R. Yeetsorn, M. W. Fowler, and C. Tzoganakis, “A review of thermoplastic composites for bipolar plate materials in PEM fuel cells,” Nanocomposites with unique properties and applications in medicine and industry, pp. 317-344, 2011.
W. Bauhofer, and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Composites science and technology, vol. 69, no. 10, pp. 1486-1498, 2009.
H. Vocca, I. Neri, F. Travasso, and L. Gammaitoni, “Kinetic energy harvesting with bistable oscillators,” Applied Energy, vol. 97, pp. 771-776, 2012.
M. Sielenkämper, and S. Wulfinghoff, “A thermomechanical finite strain shape memory alloy model and its application to bistable actuators,” Acta Mechanica, vol. 233, no. 8, pp. 3059-3094, 2022.
B. S. Yilbas, A. Al-Sharafi, and H. Ali, Self-cleaning of surfaces and water droplet mobility: Elsevier, 2019.
H. Kim and K. Najafi, "Characterization of low-temperature wafer bonding using thin-film parylene," Journal of microelectromechanical systems, vol. 14, no. 6, pp. 1347-1355, 2005.
C. Yakacki, M. Saed, D. Nair, T. Gong, S. Reed, and C. Bowman, "Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction," RSC Advances, vol. 5, no. 25, pp. 18997-19001, 2015.
M. O. Saed, A. H. Torbati, D. P. Nair, and C. M. Yakacki, "Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction," JoVE (Journal of Visualized Experiments), no. 107, p. e53546, 2016.
L. Dumée, K. Sears, J. Schütz, N. Finn, M. Duke, and S. Gray, "Influence of the sonication temperature on the debundling kinetics of carbon nanotubes in propan-2-ol," Nanomaterials, vol. 3, no. 1, pp. 70-85, 2013.
Luo and T. Liu, "SWCNT/graphite nanoplatelet hybrid thin films for self‐temperature‐compensated, highly sensitive, and extensible piezoresistive sensors," Advanced Materials, vol. 25, no. 39, pp. 5650-5657, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89880-
dc.description.abstract本研究開發出一具形狀記憶及自感測功能之液晶離子凝膠微型雙穩態元件。此微型雙穩態元件由三個部分構成,分別為具形狀記憶之液晶離子凝膠雙穩態結構、液晶彈性體致動器,以及薄膜加熱器。研究中另以特定比例混入奈米碳管,以降低液晶離子凝膠電阻值,實現自身焦耳加熱,並達成其形狀記憶行為所需之溫度條件。同時利用液晶離子凝膠之電阻值會受到應變影響,使此元件具有判斷其穩態屬第幾穩態之自感測功能。液晶彈性體於本元件中使用電熱致動,一鍍有銅電極之聚醯亞胺薄膜黏附於其上作為加熱源。透過對加熱源通電,液晶彈性體受熱則形變彎曲。同時藉由液晶離子凝膠之形狀記憶特性,當液晶彈性體形變後可對液晶離子凝膠施以外力致使其同樣彎曲形變。待液晶離子凝膠完成形狀記憶行為後,即便沒有受到液晶彈性體之外力,仍能穩定維持其記憶之外形。若再度對液晶離子凝膠加熱,便能回復至初始形狀。這些材料特性與行為除了使此元件能夠順利致動外,還能夠實現雙穩態,並同時具有自感測功能可用以判斷元件屬於何種穩態。本研究進行一系列量測與實驗,驗證此元件可透過形狀記憶特性實現雙穩態,以及具有自感測功能。該微型雙穩態元件只需通過固定電壓,即可驅動液晶彈性體和液晶離子凝膠實現雙穩態。此外,於使用情境中展示了元件利用了雙穩態達成不需供電與外力介入仍能夠持續夾持物體之能力,也具備將持續夾持之物體放置之能力,更透過量測液晶離子凝膠之穩態電阻值可判斷元件屬於第幾穩態。於未來之研究中,藉由進一步量測與探討數據,計算推估夾持物體之相關資訊,對於開發其更完善之感測功能相當具有潛力。zh_TW
dc.description.abstractIn this study, we present a miniaturized ionogel-based bistable device with sensing capability. The proposed device consists of an ionogel structure with shape memory properties, a liquid crystal elastomers (LCE) actuator, and a thin-film heater. The ionogel structure also possesses strain sensing as well as Joule heating capabilities by dispersing with carbon nanotube (CNT) molecules for enhancing its electric conductivity. The bistability of the device is achieved using the shape memory properties of ionogel. As the temperature of the ionogel structure is above the liquid crystalline transition temperature by Joule heating, the structure becomes deformable. Then, the ionogel structure can be deformed by using the LCE actuator which is thermally driven by the thin-film heater. With the external force exerted by the LCE actuator, the state of the ionogel structure can be preserved as the temperature of the structure returns to room temperature. Also, the state of the bistable ionogel structure can be detected by measuring the resistance change of the structure. In addition, after removing the external force, the bistable structure can retreat to its original state when it is heated again to the liquid crystalline transition temperature. Experimental validation of the bistability of the proposed device was also conducted. The measured relationships between the deformation of the bistable ionogel structure and its resistance change demonstrate that the device possesses the capability of sensing the states of the bistable mechanisms. Furthermore, a demonstration of object grasping and moving by using a gripper consisting of a pair of the bistable structures was presented. With the bistability of the ionogel structures, maintaining the state of object grasping without supplying electric power can be easily achieved.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:31:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:31:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
符號說明 xvii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 軟性致動器之致動方式 2
1.2.2 液晶彈性體軟性致動器致動方式 8
1.2.3 利用雙穩態結構設計之軟性致動器 13
1.3 研究動機與目的 19
1.4 論文架構 20
第二章 研究理論基礎 23
2.1 離子凝膠簡介 23
2.1.1 離子凝膠分類 23
2.1.2 離子凝膠特性 23
2.2 液晶材料簡介 26
2.2.1 液晶材料之相態與分子排列 26
2.2.2 熱致型液晶(Thermotropic liquid crystal) 28
2.2.3 液晶彈性體 28
2.3 液晶離子凝膠之特殊形狀記憶效應 31
2.4 微型雙穩態元件致動機制 32
2.4.1 焦耳加熱 (Joule Heating) 33
2.4.2 液晶彈性體變形理論 35
2.5 微型雙穩態元件感測機制 36
2.5.1 電阻公式 37
2.5.2 導電高分子(Conductive Polymer) 38
2.5.3 滲透理論(Percolation Theory) 39
2.6 元件運作原理 41
2.6.1 雙穩態 (bistable) 43
第三章 元件設計與製程 45
3.1 元件設計 45
3.2 元件製作流程 47
3.3 液晶彈性體致動器之加熱源製備 49
3.3.1 薄膜加熱器之製程流程 49
3.3.2 薄膜加熱器光罩設計與製作 50
3.3.3 薄膜加熱器之微影製程 53
3.4 液晶彈性體致動器製作 61
3.4.1 液晶彈性體模具製作 61
3.4.2 液晶彈性體預聚合物配製 62
3.4.3 液晶彈性體單軸配向 65
3.5 隔熱層模具製作 66
3.6 液晶離子凝膠雙穩態結構製備 67
3.6.1 液晶離子凝膠模具製作 68
3.6.2 液晶離子凝膠前軀體溶液配製 70
3.6.3 紫外光聚合 72
3.7 微型雙穩態元件組裝 73
3.8 元件製程結果 73
第四章 量測結果與討論 75
4.1 材料特性量測 75
4.1.1 混入不同比例奈米碳管之液晶離子凝膠電阻量測 75
4.1.2 混入不同比例奈米碳管之液晶離子凝膠受應變影響之量測 77
4.1.3 液晶離子凝膠電阻受溫度影響之量測 79
4.1.4 液晶彈性體長條狀塊材之長度隨溫度變化量測 82
4.2 感測特性量測 85
4.3 致動特性量測 88
4.4 使用情境展示與量測 93
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 98
參考文獻 99
附錄A 113
附錄B 121
-
dc.language.isozh_TW-
dc.subject雙穩態zh_TW
dc.subject自感測zh_TW
dc.subject液晶離子凝膠zh_TW
dc.subject形狀記憶zh_TW
dc.subjectIonogelen
dc.subjectSelf-sensingen
dc.subjectShape memoryen
dc.subjectbistableen
dc.title具形狀記憶及自感測功能之液晶離子凝膠微型雙穩態元件之開發zh_TW
dc.titleDevelopment of a Miniaturized LC-Ionogel-Based Bistable Device with Shape Memory Properties and Self-Sensing Capabilityen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳國聲;蘇裕軒zh_TW
dc.contributor.oralexamcommitteeKuo-Shen Chen;Yu-Hsuan Suen
dc.subject.keyword形狀記憶,液晶離子凝膠,自感測,雙穩態,zh_TW
dc.subject.keywordShape memory,Ionogel,Self-sensing,bistable,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202303696-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved