請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8986
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹明才 | |
dc.contributor.author | Chun-To Chao | en |
dc.contributor.author | 趙鐸駿 | zh_TW |
dc.date.accessioned | 2021-05-20T20:05:50Z | - |
dc.date.available | 2012-08-19 | |
dc.date.available | 2021-05-20T20:05:50Z | - |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-12 | |
dc.identifier.citation | 郭如玉 (2004). AtNPR1轉殖番茄之性狀分析及抗病機制研究。國立台灣大學植物科學研究所碩士論文。
陳永義 (2008). 番茄對抗青枯病菌之分子機制研究。國立台灣大學植物科學研究所碩士論文。 Abdrakhamanova, A., Wang, Q.Y., Khokhlova, L., and Nick, P. (2003). Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44, 676-686. Agarwal P.K., Agarwal P., Reddy M.K., Sopory S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263–1274. Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-399. Arnon, D.I. (1949). Copper Enzymes in Isolated Chloroplasts - Polyphenoloxidase in Beta-Vulgaris. Plant Physiology 24, 1-15. Barkai-Golan, R., Mirelman, D., and Sharon, N. (1978). Studies on growth inhibition by lectins of Penicillia and Aspergilli. Arch Microbiol 116, 119-121. Baulcombe D. (2004). RNA silencing in plants. Nature. 431: 356-63. Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., and Lee, J.Y. (2008). Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 148, 1897-1907. Bernoux, M., Timmers, T., Jauneau, A., Briere, C., de Wit, P.J., Marco, Y., and Deslandes, L. (2008). RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20, 2252-2264. Bethke, G., Unthan, T., Uhrig, J.F., Poschl, Y., Gust, A.A., Scheel, D., and Lee, J. (2009). Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106, 8067-8072. Blancaflor, E.B., and Hasenstein, K.H. (1995). Growth and microtubule orientation of Zea mays roots subjected to osmotic stress. Int J Plant Sci 156, 774-783. Boller, T. (1995). Chemoperception of microbial signals in plant cells. Annu. rev. plant physiol. Plant Mol. Biol. 46, 189-214. Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43, 545-580. Boyer, J.S. (1982). Plant productivity and Environment. Science 218, 443-448. Bray E.A., Bailey-Serres J., Weretilnyk E. (2000). Responses to abiotic stresses. In W Gruissem, B Buchannan, R Jones, eds, Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1249. Brigneti, G., Martin-Hernandez, A.M., Jin, H., Chen, J., Baulcombe, D.C., Baker, B., and Jones, J.D. (2004). Virus-induced gene silencing in Solanum species. Plant J 39, 264-272. Cai, X.Z., Xu, Q.F., Wang, C.C., and Zheng, Z. (2006). Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis. Plant Mol Biol 62, 223-232. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63. Chan, Y.L., Prasad, V., Sanjaya, Chen, K.H., Liu, P.C., Chan, M.T., and Cheng, C.P. (2005). Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta 221, 386-393. Chellemi, D.O., Dankers, H.A., Olson, S.M., Hodge, N.C., and Scott, J.W. (1994). Evaluating bacterial wilt-resistant tomato genotypes using a regional approach. J. Am. Soc. Hortic. Sci. 119, 325-329. Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol Plant 136, 324-335. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., and Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129, 661-677. Cheung, M.Y., Zeng, N.Y., Tong, S.W., Li, F.W., Zhao, K.J., Zhang, Q., Sun, S.S., and Lam, H.M. (2007). Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. J Exp Bot 58, 4147-4159. Chinnusamy. V., Jagendorf, A., and Zhu, J.K. (2005). Understanding and improving salt tolerance in plants. Crop Sci. 45: 437-448. Ciftci-Yilmaz, S., and Mittler, R. (2008). The zinc finger network of plants. Cell Mol Life Sci 65, 1150-1160. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-743. Constantin, G.D., Krath, B.N., MacFarlane, S.A., Nicolaisen, M., Johansen, I.E., and Lund, O.S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40, 622-631. Dealuney A.J., and Verma D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223. Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92, 6602-6606. Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801. Denny, T.P. (2006). Plant pathogenic Ralstonia species. In plant-Associated Bacteria, S.S. Gnanamanickam, ed (Dordrecht, The Netherlands: Skpringer Publishing), pp. 573-644. Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem 78, 399-434. Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T., and Neill, S.J. (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55, 205-212. Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y. (2002). Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A. 99, 2404-2409. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A 100, 8024-8029. Devoto, A., Muskett, P.R., and Shirasu, K. (2003). Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6, 307-311. Dhonukshe, P., Laxalt, A.M., Goedhart, J., Gadella, T.W.J., and Munnik, T. (2003). Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15, 2666-2679. Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. (2003). Virus-induced gene silencing. Methods Mol Biol 236, 287-294. Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51, 21-37. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209. Fitches, E., Edwards, M.G., Mee, C., Grishin, E., Gatehouse, A.M., Edwards, J.P., and Gatehouse, J.A. (2004). Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50, 61-71. Freemont, P.S. (1993). The RING finger. A novel protein sequence motif related to the zinc finger. Ann N Y Acad Sci 684, 174-192. Freemont, P.S. (2000). RING for destruction? Curr Biol 10, R84-87. Freemont, P.S., Hanson, I.M., and Trowsdale, J. (1991). A novel cysteine-rich sequence motif. Cell 64, 483-484. Fuchs U, Damm-Welk C, Borkhardt A. (2004). Silencing of disease-related genes by small interfering RNAs. Curr Mol Med. 4: 507-17. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124, 1854-1865. Goritschnig, S., Zhang, Y., and Li, X. (2007). The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant journal for cell and molecular biology. v. 49, no. 3, 540-551. Goritschnig, S., Zhang, Y., and Li, X. (2007). The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant J 49, 540-551. Grimault, V., Anais, G., and Prior, P. (1994). Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. Plant Pathology 43, 663-668. Gu, Y.Q., Yang, C., Thara, V.K., Zhou, J., and Martin, G.B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12, 771-786. Gutterson, N., and Reuber, T.L. (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7, 465-471. Hanson, P.M., Licardo, O., Hanudin, Wang, J.F., and Chen, J. (1998). Diallel analysis of bacterial wilt resistance in tomato derived from different sources. Plant Dis. 82, 74-78. Hase, S., Takahashi, S., Takenaka, S., Nakaho, K., Arie, T., Seo, S., Ohashi, Y., and Takahashi, H. (2008). Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathology 57, 870-876. Heil, M., and Baldwin, I.T. (2002). Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7, 61-67. Hein, I., Barciszewska-Pacak, M., Hrubikova, K., Williamson, S., Dinesen, M., Soenderby, I.E., Sundar, S., Jarmolowski, A., Shirasu, K., and Lacomme, C. (2005). Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138, 2155-2164. Hernandez-Blanco, C., Feng, D.X., Hu, J., Sanchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sanchez-Rodriguez, C., Anderson, L.K., Somerville, S., Marco, Y., and Molina, A. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19, 890-903. Higashi, K., Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose, Y. (2008). Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279, 303-312. Hirsch, J., Deslandes, L., Feng, D.X., Balague, C., and Marco, Y. (2002). Delayed Symptom Development in ein2-1, an Arabidopsis Ethylene-Insensitive Mutant, in Response to Bacterial Wilt Caused by Ralstonia solanacearum. Phytopathology 92, 1142-1148. Hogervorst, P.A., Ferry, N., Gatehouse, A.M., Wackers, F.L., and Romeis, J. (2006). Direct effects of snowdrop lectin (GNA) on larvae of three aphid predators and fate of GNA after ingestion. J Insect Physiol 52, 614-624. Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130, 618-626. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106. Jaunet, T.X., and Wang, J.F. (1999). Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89, 320-327. Jensen, R.B., Jensen, K.L., Jespersen, H.M., and Skriver, K. (1998). Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett 436, 283-287. Jimenez, R.F., Torres, P., Gunther, B., Morgado, E., and Jimenez, C.A. (2004). Wavelet and Fourier analysis of ventricular and main arteries pulsations in anesthetized dogs. Biol Res 37, 431-447. Joazeiro, C.A., and Weissman, A.M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552. Joazeiro, C.A., Wing, S.S., Huang, H., Leverson, J.D., Hunter, T., and Liu, Y.C. (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309-312. Kasajima, I., Ide, Y., Ohkama-Ohtsu, N., Hayashi, H., Yoneyama, T., and Fujiwara, T. (2004). A protocol for rapid DNA extraction from Arabidopsis thaliana for PCR analysis. Plant Molecular Biology Reporter 22, 49-52. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17, 287-291. Kim, S.Y., Kim, Y.C., Lee, J.H., Oh, S.K., Chung, E., Lee, S., Lee, Y.H., Choi, D., and Park, J.M. (2005). Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim Biophys Acta 1729, 141-146. Knight, H., Trewavas, A.J., and Knight, M.R. (1997). Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12, 1067-1078. Ko, J.H., Yang, S.H., and Han, K.H. (2006). Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47, 343-355. Kobayashi, I., Kobayashi, Y., and Hardham, A.R. (1994). Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 195, 237-247. Kushwaha, R., Singh, A., and Chattopadhyay, S. (2008). Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20, 1747-1759. Lahaye T. (2004). Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci 9: 1-4. Li, H., Yuan, M., and Mao, T. (2007). AtMAP65-1 binds to tubulin dimers to promote tubulin assembly. J Biochem Mol Biol 40, 218-225. Lin, W.C., Lu, C.F., Wu, J.W., Cheng, M.L., Lin, Y.M., Yang, N.S., Black, L., Green, S.K., Wang, J.F., and Cheng, C.P. (2004). Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13, 567-581. Lin, Y.M., Chou, I.C., Wang, J.F., Ho, F.I., Chu, Y.J., Huang, P.C., Lu, D.K., Shen, H.L., Elbaz, M., Huang, S.M., and Cheng, C.P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol Plant Microbe Interact 21, 1261-1270. Lipka, V., and Panstruga, R. (2005). Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8, 625-631. Liu, H., Zhang, H., Yang, Y., Li, G., Wang, X., Basnayake, B.M., Li, D., and Song, F. (2008). Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68, 17-30. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. (2002). Virus-induced gene silencing in tomato. Plant J 31, 777-786. Lopes C.A., Quezado-Soares A.M., Melo P.E., (1994). Differential resistance of tomato cultigens to biovars I and III of Pseudomonas solanacearum. Plant Dis 78, 1091-1094. Lorenzo, O., and Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8, 532-540. Mahajan, S., and Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444, 139-158. Mahalingam, V., Karvembu, R., Chinnusamy, V., and Natarajan, K. (2006). Spectral, redox and catalytic studies of triphenylphosphine/triphenylarsine complexes of Ru(III) with N, O donor ligands derived from 2-hydroxy-1-naphthaldehyde and primary amines. Spectrochim Acta A Mol Biomol Spectrosc 64, 886-890. Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. (2007). Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol 145, 1588-1599. Majumder, P., Banerjee, S., and Das, S. (2004). Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj J 20, 525-530. Marois, E., Van den Ackerveken, G., and Bonas, U. (2002). The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant Microbe Interact 15, 637-646. Mauch-Mani, B., and Mauch, F. (2005). The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8, 409-414. Mikhailova, N. (2006). Identification of open reading frames unique to a select agent: Ralstonia solanacearum race 3 biovar 2. Mol Plant Microbe Interact 19, 69-79. Mukhtar, M.S., Deslandes, L., Auriac, M.C., Marco, Y., and Somssich, I.E. (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. Plant J 56, 935-947. Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., and Shinozaki, K. (2004). Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55, 327-342. Olinevich, O.V., and Khokhlova, L.P. (2002). Reorganization of the tubulin and actin cytoskeleton under acclimation and abscisic acid treatment of Triticum aestivum L. plants. Tsitologiia 44, 532-544. Prior P., Grimault V., Schmit J. (1994). Resistance to bacterial wilt (Pseudomonas solanacearum) in tomato: present status and prospects. In: Hayward AC, Hartman GL (eds) Bacterial Wilt: The Disease and Its Causative Agent, Pseudomonas solanacearum. CAB International, Wallingford, pp 209–223 Ratnayaka, H.H., Molin, W.T., and Sterling, T.M. (2003). Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought. J Exp Bot 54, 2293-2305. Robatzek, S., Bittel, P., Chinchilla, D., Kochner, P., Felix, G., Shiu, S.H., and Boller, T. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64, 539-547. Sanan-Mishra, N., Pham, X.H., Sopory, S.K., and Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 102, 509-514. Saurin, A.J., Borden, K.L., Boddy, M.N., and Freemont, P.S. (1996). Does this have a familiar RING? Trends Biochem Sci 21, 208-214. Senthil-Kumar, M., Govind, G., Kang, L., Mysore, K.S., and Udayakumar, M. (2007). Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta. 225, 523-539. Senthil-Kumar, M., Rame Gowda, H.V., Hema, R., Mysore, K.S., and Udayakumar, M. (2008). Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol 165, 1404-1421. Serrano, M., Parra, S., Alcaraz, L.D., and Guzman, P. (2006). The ATL gene family from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J Mol Evol 62, 434-445. Sharon, N., and Lis, H. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R-62R. Shibaoka, H., and Nagai, R. (1994). The plant cytoskeleton. Curr Opin Cell Biol 6, 10-15. Shinozaki, K., and Yamaguchi-Shinozaki, K. (1996). Molecular responses to drought and cold stress. Curr Opin Biotechnol 7, 161-167. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94, 1035-1040. Subramanyam, S., Smith, D.F., Clemens, J.C., Webb, M.A., Sardesai, N., and Williams, C.E. (2008). Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. Plant Physiol 147, 1412-1426. Takabatake, R., Karita, E., Seo, S., Mitsuhara, I., Kuchitsu, K., and Ohashi, Y. (2007). Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol 48, 414-423. Takai, R., Matsuda, N., Nakano, A., Hasegawa, K., Akimoto, C., Shibuya, N., and Minami, E. (2002). EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J 30, 447-455. Takemoto, D., Maeda, H., Yoshioka, H., Doke, N., and Kawakita, K. (1999). Effect of cytochalasin D on defense responses of potato tuber discs treated with hyphal wall components of Phytophthora infestans. Plant Sci 141, 219-226. Thion, L., Mazars, C., Nacry, P., Bouchez, D., Moreau, M., Ranjeva, R., and Thuleau, P. (1998). Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13, 603-610. Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599. Torii, K.U., McNellis, T.W., and Deng, X.W. (1998). Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J 17, 5577-5587. Torii, K.U., Stoop-Myer, C.D., Okamoto, H., Coleman, J.E., Matsui, M., and Deng, X.W. (1999). The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein. J Biol Chem 274, 27674-27681. Torres, M.A., and Dangl, J.L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8, 397-403. Valentine, T., Shaw, J., Blok, V.C., Phillips, M.S., Oparka, K.J., and Lacomme, C. (2004). Efficient virus-induced gene silencing in roots using a modified tobacco rattle virus vector. Plant Physiol 136, 3999-4009. van Schie C.C.N., Haring M.A., Schuurink R.C. (2007). Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64, 251–263 Vasse J., Danoun S., Trigalet A. (2005). Microscopic studies of root infection in resistant tomato cv. Hawaii7996. In: Allen C, Hayward AC (eds) Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS Press St Paul MN pp 285–291 Verma, A.J.D.a.D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. plant journal 4, 215-223. Waditee, R., Bhuiyan, M.N., Rai, V., Aoki, K., Tanaka, Y., Hibino, T., Suzuki, S., Takano, J., Jagendorf, A.T., and Takabe, T. (2005). Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102, 1318-1323. Waigmann, E., and Zambryski, P. (1994). Plasmodesmata - Gateways for Rapid Information-Transfer. Current Biology 4, 713-716. Wang, C., Li, J., and Yuan, M. (2007). Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48, 1534-1547. Wang, C.D., Hu, Y.L., Wei H., Yu, P.C., Che, T.T., Lin, Z.P. (2004) Dehydrin gene transformed petunia showed strong resistance to drought stress. Molecular Plant Breeding 2, 369-374. Wang J.F., Lin C.H. (2005) Colonization capacity of Ralstonia solanacearum tomato strains differing in aggressiveness on tomatoes and weeds. In: Allen C, Prior P, Hayward AC (eds) Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. APS St Paul Germany pp 73–79 Wang, J.F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L., and Grimsley, N.H. (2000). Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant Microbe Interact 13, 6-13. Wang, Y.S., Pi, L.Y., Chen, X., Chakrabarty, P.K., Jiang, J., De Leon, A.L., Liu, G.Z., Li, L., Benny, U., Oard, J., Ronald, P.C., and Song, W.Y. (2006). Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18, 3635-3646. Wei, C.F., Kvitko, B.H., Shimizu, R., Crabill, E., Alfano, J.R., Lin, N.C., Martin, G.B., Huang, H.C., and Collmer, A. (2007). A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51, 32-46. Wu, L., Zhang, Z., Zhang, H., Wang, X.C., and Huang, R. (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148, 1953-1963. Xu, R., and Li, Q.Q. (2003). A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53, 37-50. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993). Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236, 331-340. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2, 1565-1572. Zeba, N., Isbat, M., Kwon, N.J., Lee, M.O., Kim, S.R., and Hong, C.B. (2009). Heat-inducible C3HC4 type RING zinc finger protein gene from Capsicum annuum enhances growth of transgenic tobacco. Planta 229, 861-871. Zhang, H., Zhang, D., Chen, J., Yang, Y., Huang, Z., Huang, D., Wang, X.C., and Huang, R. (2004). Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55, 825-834. Zhang S.Z., Yang B.P., Feng C.L., and Tang H.L. (2005). Genetic Transformation of Tobacco with the Trehalose Synthase Gene from Grifola frondosa Fr. Enhances the Resistance to Drought and Salt in Tobacco. Journal of Integrative Plant Biology. 5. Zhou, J., Zhang, H., Yang, Y., Zhang, Z., Hu, X., Chen, J., Wang, X.C., and Huang, R. (2008). Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot 59, 645-652. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8986 | - |
dc.description.abstract | 植物生長會遭受非生物性與生物性逆境的影響,其中缺水逆境(water deficit, WD)與青枯病菌(Ralstaonia solanacearum)造成的細菌性萎凋(bacterial wilt, BW)是限制作物正常的重要因子。BW與WD皆會造成植物缺乏水分,而關於植物對抗這些逆境之相關機制研究尚需探討。本論文針對WD/BW microarray分析所選出之基因群,進ㄧ步用virus-induced gene silencing (VIGS)確認其中基因是否參與番茄抗青枯病機制。利用半定量PCR檢測已證實在番茄抗病品系中,目標基因經過VIGS後,其RNA含量確實下降;再進一步將經過基因靜默之番茄植株接種青枯病菌後,植株內之病菌量顯著比對照組植物高,且可造成青枯病萎凋病徵。利用半定量PCR測試也證實其中ㄧ些基因的RNA表現量確實會受青枯病菌感染而上升。為了瞭解各基因之確切功能,本研究進一步針對SlZFP進行功能性研究。結果發現SlZFP的RNA表現量會受水楊酸及乙烯所抑制,而SlZFP之綠色螢光重組蛋白在阿拉伯芥原生質體中的表現位置是位於細胞骨架(cytoskeleton)。此外,多個過量表現SlZFP或SlZFP-GFP的阿拉伯芥或菸草轉基因品系也已建立。環境逆境測試結果顯示:轉殖SlZFP可以提升阿拉伯芥對鹽害逆境之抗性,對軟腐病之反應未顯著改變,但卻提早青枯病之發病的時間。從這些結果推測,位於細胞骨架上的蛋白SlZFP的表現量可能必須維持在平衡的狀態方能維持植物最佳之抗病反應,而SlZFP在植物病害-逆境反應之相抵觸交互作用中可能具某種的功能。透過本研究所得結果,使得我們對植物對抗缺水逆境與病害機制有更多的了解,且預期可能對研擬青枯病之有效防治管理策略將有所啟發。 | zh_TW |
dc.description.abstract | Plant constantly encounters environmental stresses, including abiotic and biotic factors. Water deficit (WD) and bacterial wilt (BW, caused by Ralstaonia solanacearum or Rs) are very important factors limiting crop production worldwide. The nature of BW shares commonness with that of WD. However, information on plant defense response to these stresses is far from sufficient. To elucidate plant stress defense mechanisms, this study aimed to study functions of a group of genes previously selected from tomato WD/BW microarray analyses. First, the genes were subjected to VIGS assays to study their roles in tomato BW defense response. The transcript accumulation of the test genes in stembases of a silenced BW-resistant tomato cultivar (Hawaii 7996, H7996) was reduced at various levels. Further BW bioassays revealed that silencing of a few genes led to a significant increase of R. solanacearum growth and BW symptom development. Additionally, The expression of a few of these genes in a H7996 was enhanced in response to R. solanacearum infection, further suggesting their involvement in tomato BW response. Moreover, functional study was performed on SlZFP. Its expression at transcriptional level was reduced by salicylic acid and ethephon treatment. Localization assay showed that SlZFP:GFP recombinant proteins colocalized on cytoskeleton with the microtubule marker protein in Arabidopsis protoplasts. Transgenic Arabidopsis and Nicotiana benthamiana plants containing 35S::SlZFP or 35S::SlZFP-GFP have been generated. Compared to the control plants, the transgenic Arabidopsis lines conferred enhanced tolerance to salinity, similar response to Erwinia carotovora subsp. carotovora, and increased BW development. These results suggest that the level of SlZFP might need to be fine-tuned in order to achieve the optimal disease defense response. This protein might play some role in the possible antagonistic interaction in plant responses to abiotic and biotic stresses. This study is expected to pave the way not only for elucidating mechanisms and determinants involved in plant stress defense responses, but also potentially benefit the establishment of useful disease control means. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:05:50Z (GMT). No. of bitstreams: 1 ntu-98-R96B42026-1.pdf: 2568860 bytes, checksum: 05df111840260c18e804c0327c1657b5 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 致謝 ii 中文摘要 iii 英文摘要 iv 常用名詞之縮寫與全名對照表 vi 目錄 vii 表目錄 x 圖目錄 xi 附錄目錄 xii 第一章 前言 1 1. 番茄簡介 1 2. 植物與環境逆境 1 3. 番茄青枯病之相關研究 2 4. 植物缺水逆境之研究 4 5. 病毒誘導性基因靜默 6 6. 鋅指蛋白 7 7. 植物細胞骨架 9 8. 研究目標……………………………………………………………………….10 第二章 材料與方法 11 1. 植物材料 11 2. 常用實驗方法 11 2.1 聚合酶連鎖反應 11 2.2 DNA凝膠電泳法 11 2.3 小量質體製備 11 2.4 TOPO® cloning (Invitrogen) 12 2.5 LR recombination (Invitrogen) 12 2.6 大腸桿菌熱震盪轉型作用 12 2.7 農桿菌電穿孔法 13 3. 植物RNA萃取 13 3.1 RNeasy Mini Kit (Invitrogen) 13 3.2 Trizol method 13 3.3 DNase treatment 14 4. 反轉錄聚合酶連鎖反應(RT-PCR) 14 5. 病毒誘導性基因靜默 14 6. 番茄接種青枯病菌之評估 15 7. 半定量RT-PCR 16 8. Real-time PCR 16 9. 番茄接種青枯病菌之樣本收取 16 10. SlZFP於植物細胞中表現位置之分析 16 10.1 阿拉伯芥原生質體之分離 16 10.2 PEG transfection 17 11. 阿拉伯芥花序浸潤轉殖法 17 12. 快速抽取植物DNA 18 13. 葉綠素含量測量 18 14. 番茄處理植物荷爾蒙 18 15. 植物逆境檢測 19 15.1 鹽害逆境 19 15.2 種子萌發率測試 19 15.3 乾旱逆境 19 15.3 青枯病菌接種 19 15.3 軟腐病菌接種 20 16. 生物資訊分析與統計分析 20 第三章 結果 21 1. VIGS 基因靜默之效率檢測 21 2. VIGS靜默特定基因後使番茄對抗青枯病菌能力下降 21 3. 番茄接種青枯病菌後之基因表現分析 22 4. SlZFP-cDNA之全長調取 22 5. 水楊酸、乙烯及茉莉酸處理番茄後之SlZFP表現分析 23 6. SlZFP可能位在植物細胞骨架上 24 7. 阿拉伯芥轉殖株之篩選與分子檢驗 24 8. 過量表現SlZFP增加阿拉伯芥青枯病菌的發病速率 25 9. 過量表現SlZFP未顯著影響阿拉伯芥對軟腐病菌的抗性 25 10. 過量表現SlZFP稍微增加阿拉伯芥之鹽害耐受性 25 12. 乾旱逆境測試顯示SlZFP未顯著影響植物的耐旱性 26 第四章 討論 27 1. 靜默番茄中特定基因後造成番茄外表型改變或降低對抗青枯病菌的能力 27 2. 青枯病菌誘導番茄特定基因之表現量上升 28 3. SlZFP表現量受到青枯病菌及水楊酸調控 29 4. SlZFP可能位於植物細胞的細胞骨架 30 5. 35S::SlZFP轉殖株生長正常 31 6. 過量表現SlZFP可能造成阿拉伯芥轉殖株對青枯病菌的抵抗能力下降 32 7. SlZFP在鹽害中可能扮演的角色 34 8. 總結.....................................................................................................................34 參考文獻 35 表目錄 表一、VIGS靜默番茄特定基因並檢測接種青枯菌後之菌量 44 表二、檢測VIGS靜默效率所使用之引子 45 表三、用來設計VIGS片段所使用之引子 46 表四、Real-time PCR及SlZFP選殖所使用之引子 47 圖目錄 圖ㄧ、以半定量RT-PCR檢測VIGS靜默特定基因效率之測定 48 圖二、利用VIGS靜默番茄特定之基因使番茄出現生長受阻 49 圖三、半定量RT-PCR檢測番茄接種青枯病菌之標示基因 50 圖四、Real-time PCR檢測番茄接種青枯病菌後一群基因的表現分析 52 圖五、SlZFP與阿拉伯芥中相似的蛋白質胺基酸序列比對 53 圖六、Real-time PCR檢測番茄處裡水楊酸後Pti4以及SlZFP的表現情況 54 圖七、Real-time PCR檢測番茄處理ethephon後Pti4以及SlZFP的表現情況…55 圖八、Real-time PCR檢測番茄處裡茉莉酸後WIPI-2以及SlZFP的表現情況…56 圖九、SlZFP之綠色螢光重組蛋白在阿拉伯芥原生質體中的表現位置分析 58 圖十、利用RT-PCR檢測35S::SlZFP轉殖阿拉伯芥之SlZFP表現量 59 圖十一、35S::SlZFP阿拉伯芥的外表型與野生株及轉殖空載體之阿拉伯芥比較無太大差異 60 圖十二、三週大阿拉伯芥接種青枯病菌RD15進行抗病性測試 61 圖十三、三週大阿拉伯芥接種軟腐病菌 62 圖十四、過量表現SlZFP之阿拉伯芥擁有較高的鹽害耐受性 63 圖十五、鹽害逆境下的阿拉伯芥種子萌發率 64 圖十六、乾旱逆境測試顯示SlZFP不影響轉殖阿拉伯芥的耐旱性 65 附錄目錄 附錄ㄧ、利用VIGS篩選DNA微陣列選出的可能防禦基因 66 附錄二、反轉錄PCR檢測SlZFP在AtNPR1轉殖番茄中的表現情況 67 附錄三、35S::SlZFP轉殖菸草已培育到R1世代 68 附錄四、35S::ZFP-GFP轉殖菸草已經培育到R1世代 69 附錄五、常用培養基及藥劑 70 附錄六、用於TA clone的pCR8®/GW/TOPO®載體……………………………….73 附錄七、阿拉伯芥及菸草轉殖所用載體………………………………………...... 74 附錄八、表現SlZFP綠色螢光崇組蛋白所使用的載體…………………………...75 附錄九、TRV-based VIGS vectors…………………………………………………..76 | |
dc.language.iso | zh-TW | |
dc.title | 一個番茄鋅指蛋白基因之鑑認與功能分析 | zh_TW |
dc.title | identification and functional study of a tomato zinc finger protein gene | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鄭秋萍 | |
dc.contributor.oralexamcommittee | 林讚標,張孟基 | |
dc.subject.keyword | 青枯病,缺水逆境,鋅指蛋白,細胞骨架,植物荷爾蒙, | zh_TW |
dc.subject.keyword | bacterial wilt,water deficit,zinc finger protein,cytoskeleton,phytohormone, | en |
dc.relation.page | 76 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-13 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 2.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。