請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89866完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 張庭嘉 | zh_TW |
| dc.contributor.author | Ting-Chia Chang | en |
| dc.date.accessioned | 2023-09-22T16:27:33Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 1. Wahl, M.C., C.L. Will, and R. Lührmann, The spliceosome: design principles of a dynamic RNP machine. Cell, 2009. 136(4): p. 701-18.
2. Will, C.L. and R. Lührmann, Spliceosome structure and function. Cold Spring Harb Perspect Biol, 2011. 3(7). 3. Jacquier, A., Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem Sci, 1990. 15(9): p. 351-4. 4. Pyle, A.M., Group II Intron Self-Splicing. Annu Rev Biophys, 2016. 45: p. 183-205. 5. Wahl, M.C., C.L. Will, and R. Lührmann, The Spliceosome: Design Principles of a Dynamic RNP Machine. Cell, 2009. 136(4): p. 701-718. 6. Jamison, S.F., A. Crow, and M.A. Garcia-Blanco, The spliceosome assembly pathway in mammalian extracts. Mol Cell Biol, 1992. 12(10): p. 4279-87. 7. Wilkinson, M.E., C. Charenton, and K. Nagai, RNA Splicing by the Spliceosome. Annu Rev Biochem, 2020. 89: p. 359-388. 8. Tanner, N.K. and P. Linder, DExD/H Box RNA Helicases: From Generic Motors to Specific Dissociation Functions. Molecular Cell, 2001. 8(2): p. 251-262. 9. Liu, Y.C. and S.C. Cheng, Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J Biomed Sci, 2015. 22(1): p. 54. 10. Kistler, A.L. and C. Guthrie, Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev, 2001. 15(1): p. 42-9. 11. Liang, W.W. and S.C. Cheng, A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev, 2015. 29(1): p. 81-93. 12. Hage, R., et al., A targeted bypass screen identifies Ynl187p, Prp42p, Snu71p, and Cbp80p for stable U1 snRNP/Pre-mRNA interaction. Mol Cell Biol, 2009. 29(14): p. 3941-52. 13. Raghunathan, P.L. and C. Guthrie, RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol, 1998. 8(15): p. 847-55. 14. van Nues, R.W. and J.D. Beggs, Functional contacts with a range of splicing proteins suggest a central role for Brr2p in the dynamic control of the order of events in spliceosomes of Saccharomyces cerevisiae. Genetics, 2001. 157(4): p. 1451-67. 15. Lardelli, R.M., et al., Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. Rna, 2010. 16(3): p. 516-28. 16. Ohrt, T., et al., Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. Rna, 2012. 18(6): p. 1244-56. 17. Tseng, C.K., H.L. Liu, and S.C. Cheng, DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. Rna, 2011. 17(1): p. 145-54. 18. Schwer, B., A Conformational Rearrangement in the Spliceosome Sets the Stage for Prp22-Dependent mRNA Release. Molecular Cell, 2008. 30(6): p. 743-754. 19. Felisberto-Rodrigues, C., et al., Structural and functional characterisation of human RNA helicase DHX8 provides insights into the mechanism of RNA-stimulated ADP release. Biochem J, 2019. 476(18): p. 2521-2543. 20. Tsai, R.T., et al., Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev, 2005. 19(24): p. 2991-3003. 21. Jarmoskaite, I. and R. Russell, RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem, 2014. 83: p. 697-725. 22. Gilman, B., P. Tijerina, and R. Russell, Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochemical Society Transactions, 2017. 45(6): p. 1313-1321. 23. He, Y., et al., Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. Rna, 2017. 23(7): p. 1110-1124. 24. Chen, Y., et al., DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci U S A, 2008. 105(51): p. 20203-8. 25. Schwer, B., A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell, 2008. 30(6): p. 743-54. 26. Schwer, B. and C.H. Gross, Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. The EMBO Journal, 1998. 17(7): p. 2086-2094. 27. Sebastian, R. and P. Oberdoerffer, Transcription-associated events affecting genomic integrity. Philos Trans R Soc Lond B Biol Sci, 2017. 372(1731). 28. Pastink, A., J.C. Eeken, and P.H. Lohman, Genomic integrity and the repair of double-strand DNA breaks. Mutat Res, 2001. 480-481: p. 37-50. 29. Zhou, B.B. and S.J. Elledge, The DNA damage response: putting checkpoints in perspective. Nature, 2000. 408(6811): p. 433-9. 30. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8. 31. Rouse, J. and S.P. Jackson, Interfaces between the detection, signaling, and repair of DNA damage. Science, 2002. 297(5581): p. 547-51. 32. Krokan, H.E. and M. Bjørås, Base excision repair. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a012583. 33. Zhang, X., M. Yin, and J. Hu, Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai), 2022. 54(6): p. 807-819. 34. Liao, H., et al., Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Rep, 2018. 19(9). 35. Blackford, A.N. and S.P. Jackson, ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell, 2017. 66(6): p. 801-817. 36. Smith, J., et al., The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res, 2010. 108: p. 73-112. 37. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-1078. 38. Yue, X., et al., DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet, 2020. 11: p. 607428. 39. Lans, H., J.A. Marteijn, and W. Vermeulen, ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin, 2012. 5: p. 4. 40. Moskwa, P., Chapter 19 - Repair of Double-Strand Breaks by Nonhomologous End Joining: Its Components and Their Function, in Genome Stability, I. Kovalchuk and O. Kovalchuk, Editors. 2016, Academic Press: Boston. p. 321-336. 41. Wright, W.D., S.S. Shah, and W.D. Heyer, Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem, 2018. 293(27): p. 10524-10535. 42. Symington, L.S., End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb Perspect Biol, 2014. 6(8). 43. Smith, H.L., et al., DNA damage checkpoint kinases in cancer. Expert Rev Mol Med, 2020. 22: p. e2. 44. Mimitou, E.P. and L.S. Symington, Nucleases and helicases take center stage in homologous recombination. Trends Biochem Sci, 2009. 34(5): p. 264-72. 45. Longhese, M.P., et al., Mechanisms and regulation of DNA end resection. Embo j, 2010. 29(17): p. 2864-74. 46. Cejka, P. and L.S. Symington, DNA End Resection: Mechanism and Control. Annu Rev Genet, 2021. 55: p. 285-307. 47. O'Sullivan, R.J. and J. Karlseder, Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol, 2010. 11(3): p. 171-81. 48. Blackburn, E.H., C.W. Greider, and J.W. Szostak, Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med, 2006. 12(10): p. 1133-8. 49. de Lange, T., et al., Structure and variability of human chromosome ends. Mol Cell Biol, 1990. 10(2): p. 518-27. 50. Cech, T.R., Beginning to understand the end of the chromosome. Cell, 2004. 116(2): p. 273-9. 51. Amir, M., et al., Structural Features of Nucleoprotein CST/Shelterin Complex Involved in the Telomere Maintenance and Its Association with Disease Mutations. Cells, 2020. 9(2). 52. de Lange, T., Shelterin-Mediated Telomere Protection. Annu Rev Genet, 2018. 52: p. 223-247. 53. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 2008. 10(2): p. 228-36. 54. Azzalin, C.M. and J. Lingner, Telomere functions grounding on TERRA firma. Trends Cell Biol, 2015. 25(1): p. 29-36. 55. Cusanelli, E., C.A. Romero, and P. Chartrand, Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Mol Cell, 2013. 51(6): p. 780-91. 56. Porro, A., et al., Functional characterization of the TERRA transcriptome at damaged telomeres. Nat Commun, 2014. 5: p. 5379. 57. Maicher, A., A. Lockhart, and B. Luke, Breaking new ground: digging into TERRA function. Biochim Biophys Acta, 2014. 1839(5): p. 387-94. 58. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 59. Fernandes, R.V., M. Feretzaki, and J. Lingner, The makings of TERRA R-loops at chromosome ends. Cell Cycle, 2021. 20(18): p. 1745-1759. 60. Draskovic, I., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15726-31. 61. Nabetani, A., O. Yokoyama, and F. Ishikawa, Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J Biol Chem, 2004. 279(24): p. 25849-57. 62. Mei, C., et al., The role of single strand break repair pathways in cellular responses to camptothecin induced DNA damage. Biomed Pharmacother, 2020. 125: p. 109875. 63. Sakasai, R. and K. Iwabuchi, The distinctive cellular responses to DNA strand breaks caused by a DNA topoisomerase I poison in conjunction with DNA replication and RNA transcription. Genes Genet Syst, 2016. 90(4): p. 187-94. 64. Sordet, O., et al., Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep, 2009. 10(8): p. 887-93. 65. Xu, Y., X. Wu, and C. Her, hMSH5 Facilitates the Repair of Camptothecin-induced Double-strand Breaks through an Interaction with FANCJ. J Biol Chem, 2015. 290(30): p. 18545-58. 66. Belotserkovskii, B.P., et al., R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair (Amst), 2018. 71: p. 69-81. 67. Michelini, F., et al., Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol, 2017. 19(12): p. 1400-1411. 68. Domingo-Prim, J., F. Bonath, and N. Visa, RNA at DNA Double-Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids. Bioessays, 2020. 42(5): p. e1900225. 69. Böttcher, R., et al., RNA polymerase II is recruited to DNA double-strand breaks for dilncRNA transcription in Drosophila. RNA Biol, 2022. 19(1): p. 68-77. 70. Williamson, L., et al., UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene. Cell, 2017. 168(5): p. 843-855.e13. 71. Gyenis, A., et al., UVB induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells. PLoS genetics, 2014. 10(7): p. e1004483. 72. Shanbhag, N.M., et al., ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell, 2010. 141(6): p. 970-81. 73. Lu, W.T., et al., Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun, 2018. 9(1): p. 532. 74. Sharma, S., et al., MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Rep, 2021. 34(1): p. 108565. 75. Gómez-Cabello, D., et al., CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway. Nat Commun, 2022. 13(1): p. 5303. 76. Chu, H.P., et al., TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 2017. 170(1): p. 86-101.e16. 77. Ohle, C., et al., Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell, 2016. 167(4): p. 1001-1013.e7. 78. Liu, S., et al., RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell, 2021. 184(5): p. 1314-1329.e10. 79. Pankotai, T., et al., DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks. Nature Structural & Molecular Biology, 2012. 19(3): p. 276-282. 80. Kang, W., et al., Transcription reinitiation by recycling RNA polymerase that diffuses on DNA after releasing terminated RNA. Nat Commun, 2020. 11(1): p. 450. 81. Lindenboim, L., et al., The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov, 2020. 6: p. 29. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89866 | - |
| dc.description.abstract | 當DNA結構受到外部或內在產生的有毒因素時(例如:紫外線作為外源毒性或R-loop的形成視為內源因素),會對genomic DNA中造成DNA損傷。如果未能即時修復這些DNA損傷,最終可能會導致細胞的衰亡,也因此細胞發展了各種機制來維護DNA結構的完整性。R-loop是由單股DNA和DNA-RNA hybrid所組成,而R-loop的生成會使DNA結構的不穩定,也因此R-loop的解開是被需要的。
DHX8 是RNA helicase,本身作為splicing factor可以從spliceosome上釋出mRNA而聞名。先前研究中已經證實DHX8在體外可以解開DNA-RNA hybrid,且我們發現DHX8 會影響R-loop的累積。此外,我們先前的研究亦有發現DHX8參與了ATR-Chk2 repair pathway,並且在缺乏DHX8的細胞中,造成RPA無法累積在 DNA 斷裂處。 然而,我們的最近結果顯示出:當加入DNA 損傷藥劑CPT 時,DHX8對於消除double-strand break(DSB)上的DNA-RNA hybrid是沒有效用的。此外,我們意外的發現:加入DNA 損傷藥劑CPT,在缺乏DHX8的情況下,會無法累積在DNA斷裂處上的DNA-RNA hybrid。 因前人的研究指出RNA polymerase(RNAPII)可以轉錄DNA-induced long non-coding RNA(dilncRNA),且該RNA可以參與DNA損傷(DDR)的啟動。基於上述的研究,我們推測DHX8與召集RNAPII到DSB上具有潛在作用,我們的結果顯示出:在缺乏DHX8的細胞中,RNAPII被召集至DSB的數量明顯減少,這說明DHX8在促進RNAPII被召集到DSB中發揮了關鍵作用。 | zh_TW |
| dc.description.abstract | Once the DNA structure is challenged by the toxic external or internal factors, such as ultraviolet light as exogenous toxicity or the formation of R-loops as an endogenous factor, it can result in the generation of DNA lesions within the genomic DNA. Failure to repair these DNA lesions can ultimately lead to cell death. Therefore, cells have developed various mechanisms to preserve genomic integrity.
R-loop is a structure composed of single-strand DNA and DNA-RNA hybrid. The formation of R-loops destabilizes the DNA structure, and therefore is required to be unwound. DHX8, an RNA helicase known for mRNA releasing from spliceosome, has been demonstrated to unwind DNA-RNA hybrid in vitro. Our previous study showed that DHX8 depletion leads to accumulation of genomic R-loop, and inhibits the activation of the ATR-Chk1 repair pathway. Depletion of DHX8 displays a defect of replication protein A (RPA) recruitment to DNA damage sites, thereby impeding the further steps of the DNA repair pathway. Surprisingly, our results demonstrate that DHX8 depletion fails to accumulate DNA-RNA hybrids at double-strand break (DSB) sites upon camptothecin (CPT) treatment. We show that DHX8 is associated with RNA polymerase II (RNAPII), R-loops and DNA breaks induced by CPT. Recent studies indicate that RNAPII can transcribe DNA damage-induced long non-coding RNAs (dilncRNAs), which are involved in initiating DNA damage response (DDR). To test the potential involvement of DHX8 in the recruitment of RNAPII to double-strand breaks (DSBs), proximity ligation assay (PLA) for RNAPII and 𝛾H2AX was performed to detect RNAPII at DSBs. The result shows that depletion of DHX8 leads to a decrease of RNAPII at DSB sites, suggesting that DHX8 plays a critical role in regulating the recruitment of RNAPII to DSBs, and this recruitment is important for the initiation of DNA repair. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:27:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:27:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
誌謝 i 中文摘要 ii Abstract iii Contents v Content of figures and supplementary figures x Content of tables xi Abbreviations xii Chapter 1 Introduction 1 1-1 Splicing and spliceosomes 1 1-2 DExD/H-box proteins within spliceosomes 2 1-3 DEAH-box proteins and DEAH-box helicase 8 (DHX8) 4 1-4 DNA damage response and DNA damage repair pathway 5 1-5 Telomeric repeat-containing RNA (TERRA) and Alternative lengthening of telomere (ALT) cancer cells 8 1-6 Camptothecin (CPT) 10 1-7 DNA-RNA hybrid formation after DNA damage 11 1-8 Recruitment and regulation of RNA polymerases after DNA damage 12 1-9 DHX8 depletion results in TERRA R-loop accumulation at telomeres 13 Chapter 2 Materials and Methods 16 2-1 Cell culture 16 2-2 siRNA knockdown and CPT treatment 16 2-3 Protein-protein Immunostaining 17 2-4 Western blotting 18 2-5 Proximity ligation assay (PLA) 19 2-6 Quantitative and statistical analysis 22 Chapter 3 Results 24 3-1 DHX8 is recruited to CPT-induced DNA damage sites. 24 3-2 DHX8 is recruited to DNA-RNA hybrids. 26 3-3 DHX8 depletion reduces RNA-DNA hybrids at DNA damage sites. 27 3-4 DHX8 interacts with RNA polymerase II in response to CPT-induced DNA damage. 29 3-5 DHX8 is required for RNA polymerase II recruitment at DNA damage sites. 30 Chapter 4 Discussion 32 Chapter 5 Figures and supplementary figures 39 Chapter 6 Tables 60 Chapter 7 References 67 Content of figures and supplementary figures Figure 1. DHX8 is recruited to DNA damage sites. 41 Figure 2. DHX8 is recruited to DNA-RNA hybrids after CPT treatment. 44 Figure 3. DHX8 is required for the formation of DNA-RNA hybrids at DNA double-stranded break sites. 48 Figure 4. DHX8 is associated with RNA polymerase (RNAPII) upon CPT treatment. 50 Figure 5. DHX8 is required for RNA polymerase II recruitment to the DNA double-stranded break sites. 52 Figure 6. Analysis of PLA signals in U2OS cells treated with CPT. 53 Figure 7. Models. 55 Supplementary Figure 1. DHX8 depletion leads to accumulation of telomeric R-loops in ALT cancer cells. 58 Content of tables Table 1. Seeding density and CSKT/ TrixtonX-100 treatment time of each cell lines in cell staining experiment 60 Table 2. Antibodies used in IF and PLA 61 Table 3. Antibodies used in WB 62 Table 4. siRNA used in transfection 63 Table 5. Reagents 63 | - |
| dc.language.iso | en | - |
| dc.subject | DNA損害反應 | zh_TW |
| dc.subject | DHX8 | zh_TW |
| dc.subject | 剪接因子 | zh_TW |
| dc.subject | DNA-RNA hybrid | zh_TW |
| dc.subject | RNA聚合酶II | zh_TW |
| dc.subject | splicing factor | en |
| dc.subject | DHX8 | en |
| dc.subject | DNA-RNA hybrid | en |
| dc.subject | DDR | en |
| dc.subject | RNAPII | en |
| dc.title | DHX8對DNA雙股斷裂點招募RNA聚合酶II的影響 | zh_TW |
| dc.title | DHX8 impacts the recruitment of RNA polymerase II to DNA double-strand break sites | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳青錫;譚婉玉 | zh_TW |
| dc.contributor.oralexamcommittee | CHING-SHYI WU;Woan-Yuh Tarn | en |
| dc.subject.keyword | DNA損害反應,剪接因子,DHX8,DNA-RNA hybrid,RNA聚合酶II, | zh_TW |
| dc.subject.keyword | DDR,splicing factor,DHX8,DNA-RNA hybrid,RNAPII, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202303302 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2028-08-07 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
