Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊東霖zh_TW
dc.contributor.advisorTony Yangen
dc.contributor.author蔡明哲zh_TW
dc.contributor.authorMing-Zhe Tsaien
dc.date.accessioned2023-09-22T16:26:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citation[1] Yang, Z., Sharma, A., Qi, J., Peng, X., Lee, D. Y., Hu, R., ... & Kim, J. S. (2016). Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chemical Society Reviews, 45(17), 4651-4667.
[2] Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
[3] Rayleigh. (1896). XV. On the theory of optical images, with special reference to the microscope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(255), 167-195.
[4] Stallinga, S., & Rieger, B. (2010). Accuracy of the Gaussian point spread function model in 2D localization microscopy. Optics express, 18(24), 24461-24476.
[5] Jemec, J., Pernuš, F., Likar, B., & Bürmen, M. (2017). 2D sub-pixel point spread function measurement using a virtual point-like source. International journal of computer vision, 121, 391-402.
[6] Du, H., & Voss, K. J. (2004). Effects of point-spread function on calibration and radiometric accuracy of CCD camera. Applied optics, 43(3), 665-670.
[7] Mao, S., Wang, Z., & Pan, J. (2020). Microscope 3D Point Spread Function Evaluation Method on a Confirmed Object Plane Perpendicular to the Optical Axis. Applied Sciences, 10(7), 2430.
[8] Huang, B., Bates, M., & Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annual review of biochemistry, 78, 993-1016.
[9] Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., ... & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. science, 313(5793), 1642-1645.
[10] Hirano, Y., Matsuda, A., & Hiraoka, Y. (2015). Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy, 64 4, 237-49 .
[11] Heintzmann, R., & Huser, T. (2017). Super-resolution structured illumination microscopy. Chemical reviews, 117(23), 13890-13908.
[12] Jost, A., Tolstik, E., Feldmann, P., Wicker, K., Sentenac, A., & Heintzmann, R. (2015). Optical sectioning and high resolution in single-slice structured illumination microscopy by thick slice blind-SIM reconstruction. PloS one, 10(7), e0132174.
[13] Shterman, D., Gjonaj, B., & Bartal, G. (2018). Experimental demonstration of multi moiré structured illumination microscopy. ACS Photonics, 5(5), 1898-1902.
[14] Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W., & Bonhoeffer, T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences, 105(48), 18982-18987.
[15] Demmerle, J., Innocent, C., North, A. J., Ball, G., Müller, M., Miron, E., ... & Schermelleh, L. (2017). Strategic and practical guidelines for successful structured illumination microscopy. Nature protocols, 12(5), 988-1010.
[16] Hao, X., Kuang, C., Wang, T., & Liu, X. (2010). Effects of polarization on the de-excitation dark focal spot in STED microscopy. Journal of Optics, 12(11), 115707.
[17] Willig, K. I., Harke, B., Medda, R., & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature methods, 4(11), 915-918.
[18] Vicidomini, G., Bianchini, P., & Diaspro, A. (2018). STED super-resolved microscopy. Nature methods, 15(3), 173-182.
[19] Lelek, M., Gyparaki, M. T., Beliu, G., Schueder, F., Griffié, J., Manley, S., ... & Zimmer, C. (2021). Single-molecule localization microscopy. Nature Reviews Methods Primers, 1(1), 39.
[20] Henriques, R., Griffiths, C., Hesper Rego, E., & Mhlanga, M. M. (2011). PALM and STORM: unlocking live‐cell super‐resolution. Biopolymers, 95(5), 322-331.
[21] Shroff, H., Galbraith, C. G., Galbraith, J. A., & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature methods, 5(5), 417-423.
[22] Hess, S. T., Girirajan, T. P., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal, 91(11), 4258-4272.
[23] Rossy, J., Williamson, D. J., Benzing, C., & Gaus, K. (2012). The integration of signaling and the spatial organization of the T cell synapse. Frontiers in immunology, 3, 352.
[24] Gensch, T., Böhmer, M., & Aramendía, P. F. (2005). Single molecule blinking and photobleaching separated by wide-field fluorescence microscopy. The Journal of Physical Chemistry A, 109(30), 6652-6658.
[25] Demchenko, A. P. (2020). Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods and applications in fluorescence, 8(2), 022001.
[26] Nienhaus, K., & Nienhaus, G. U. (2014). Fluorescent proteins for live-cell imaging with super-resolution. Chemical Society Reviews, 43(4), 1088-1106.
[27] Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods, 3(10), 793-796.
[28] Endesfelder, U., & Heilemann, M. (2015). Direct stochastic optical reconstruction microscopy (dSTORM). Advanced Fluorescence Microscopy: Methods and Protocols, 263-276.
[29] Gordon, M. P., Ha, T., & Selvin, P. R. (2004). Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences, 101(17), 6462-6465.
[30] Lee, S. H., Shin, J. Y., Lee, A., & Bustamante, C. (2012). Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proceedings of the National Academy of Sciences, 109(43), 17436-17441.
[31] Huang, B., Babcock, H., & Zhuang, X. (2010). Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143(7), 1047-1058.
[32] Fukaminato, T. (2011). Single-molecule fluorescence photoswitching: Design and synthesis of photoswitchable fluorescent molecules. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(3), 177-208.
[33] Chozinski, T. J., Gagnon, L. A., & Vaughan, J. C. (2014). Twinkle, twinkle little star: Photoswitchable fluorophores for super-resolution imaging. FEBS letters, 588(19), 3603-3612.
[34] Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Expansion microscopy. Science, 347(6221), 543-548.
[35] Wassie, A. T., Zhao, Y., & Boyden, E. S. (2019). Expansion microscopy: principles and uses in biological research. Nature methods, 16(1), 33-41.
[36] Chozinski, T. J., Halpern, A. R., Okawa, H., Kim, H. J., Tremel, G. J., Wong, R. O., & Vaughan, J. C. (2016). Expansion microscopy with conventional antibodies and fluorescent proteins. Nature methods, 13(6), 485-488.
[37] Chen, F., Wassie, A. T., Cote, A. J., Sinha, A., Alon, S., Asano, S., ... & Boyden, E. S. (2016). Nanoscale imaging of RNA with expansion microscopy. Nature methods, 13(8), 679-684.
[38] Asano, S. M., Gao, R., Wassie, A. T., Tillberg, P. W., Chen, F., & Boyden, E. S. (2018). Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Current Protocols in Cell Biology, 80(1), e56.
[39] Zhuang, Y., & Shi, X. (2023). Expansion microscopy: A chemical approach for super-resolution microscopy. Current Opinion in Structural Biology, 81, 102614.
[40] Damstra, H. G., Mohar, B., Eddison, M., Akhmanova, A., Kapitein, L. C., & Tillberg, P. W. (2022). Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). Elife, 11, e73775.
[41] Gambarotto, D., Zwettler, F. U., Le Guennec, M., Schmidt-Cernohorska, M., Fortun, D., Borgers, S., ... & Guichard, P. (2019). Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature methods, 16(1), 71-74.
[42] Gambarotto, D., Hamel, V., & Guichard, P. (2021). Ultrastructure expansion microscopy (U-ExM). In Methods in Cell Biology (Vol. 161, pp. 57-81). Academic Press.
[43] Tillberg, P. W., Chen, F., Piatkevich, K. D., Zhao, Y., Yu, C. C., English, B. P., ... & Boyden, E. S. (2016). Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature biotechnology, 34(9), 987-992.
[44] Jekel, P. A., Weijer, W. J., & Beintema, J. J. (1983). Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Analytical biochemistry, 134(2), 347-354.
[45] Bokman, S. H., & Ward, W. W. (1981). Renaturation of Aequorea green-fluorescent protein. Biochemical and biophysical research communications, 101(4), 1372-1380.
[46] Chang, J. B., Chen, F., Yoon, Y. G., Jung, E. E., Babcock, H., Kang, J. S., ... & Boyden, E. S. (2017). Iterative expansion microscopy. Nature methods, 14(6), 593-599.
[47] Mäntylä, E., Montonen, T., Azzari, L., Mattola, S., Hannula, M., Vihinen-Ranta, M., ... & Ihalainen, T. O. (2023). Iterative immunostaining combined with expansion microscopy and image processing reveals nanoscopic network organization of nuclear lamina. Molecular Biology of the Cell, mbc-E22.
[48] Louvel, V., Haase, R., Mercey, O., Laporte, M. H., Soldati-Favre, D., Hamel, V., & Guichard, P. (2022). Nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy (iU-ExM). bioRxiv, 2022-11.
[49] Woo, J., Seo, J. M., Lee, M., Kim, J., Min, S., Kim, S. T., ... & Park, J. Y. (2020). A modified magnified analysis of proteome (MAP) method for super-resolution cell imaging that retains fluorescence. Scientific reports, 10(1), 4186.
[50] Ku, T., Swaney, J., Park, J. Y., Albanese, A., Murray, E., Cho, J. H., ... & Chung, K. (2016). Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nature biotechnology, 34(9), 973-981.
[51] Atkinson, G. M., & Assatourians, K. (2015). Implementation and validation of EXSIM (a stochastic finite‐fault ground‐motion simulation algorithm) on the SCEC broadband platform. Seismological Research Letters, 86(1), 48-60.
[52] Melan, M. A. (1995). Overview of cell fixation and permeabilization. Immunocytochemical Methods and Protocols, 55-66.
[53] Bai, X. C., McMullan, G., & Scheres, S. H. (2015). How cryo-EM is revolutionizing structural biology. Trends in biochemical sciences, 40(1), 49-57.
[54] Laporte, M. H., Klena, N., Hamel, V., & Guichard, P. (2022). Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). Nature methods, 19(2), 216-222.
[55] Chang, T. J. B., Hsu, J. C. C., & Yang, T. T. (2023). Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles. Nature Communications, 14(1), 1688.
[56] Bachmann, L., & Mayer, E. (1987). Physics of water and ice: implications for cryofixation. Cryotechniques in biological electron microscopy, 3-34.
[57] Porta, D., & López-Iglesias, C. (1998). A comparison of cryo-versus chemical fixation in the soil green algae Jaagiella. Tissue and Cell, 30(3), 368-376.
[58] Barsch, F., Niedermair, T., Mamilos, A., Schmitt, V. H., Grevenstein, D., Babel, M., ... & Brochhausen, C. (2020). Physiological and pathophysiological aspects of primary Cilia—a literature review with view on functional and structural relationships in Cartilage. International Journal of Molecular Sciences, 21(14), 4959.
[59] Vertii, A., Hung, H. F., Hehnly, H., & Doxsey, S. (2016). Human basal body basics. Cilia, 5, 1-7.
[60] Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B., & Christensen, S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology, 15(4), 199-219.
[61] Martens, K. J., Turkowyd, B., & Endesfelder, U. (2022). Raw data to results: a hands-on introduction and overview of computational analysis for single-molecule localization microscopy. Frontiers in bioinformatics, 1, 817254.
[62] Pedersen, L. B., Veland, I. R., Schrøder, J. M., & Christensen, S. T. (2008). Assembly of primary cilia. Developmental dynamics: an official publication of the American Association of Anatomists, 237(8), 1993-2006.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89863-
dc.description.abstract傳統光學顯微鏡受到繞射極限的限制,無法清晰觀察到 200 奈米以下的細微結構,電子顯微鏡(EM)及超解析顯微技術(SR)的出現突破了這個瓶頸,帶我們向下窺探奈米尺度的世界。近年來更是開發出冷凍電子顯微鏡(Cryo-EM),解決了電子顯微鏡無法使用在生物樣本的困難。考慮到 Cryo-EM 的優異性,在初步的簡易實驗中,可以觀察到影像的品質在不同條件下呈現出不同的樣貌。為了進一步找到最佳的影像品質,我們參考 Cryo-EM 設備的運作程序,開發出簡易的操作機台,自動化的流程操作起來更為便利,減少了人為操作失誤的同時也能提高時間精度,對於實驗的可重複性極為重要。
最後,我們使用 Ex-dSTORM 來觀察超微結構上的影響。分析三組獨立實驗的統計結果,寬場顯微鏡(widefield microscopy)所拍攝的影像在冷凍時長 120 秒至 180 秒間獲得的影像平均亮度較高;實驗中我們也分析了每組的隨機光學重建顯微鏡(dSTORM)影像,注意到拉長冷凍時間的同時,會有螢光分子分布不均勻的現象。總結以上結果,我們認為 120 秒至 150 秒左右的冷凍時長能得到較亮的影像及較優的品質,是最適合拍攝單分子影像的條件。
zh_TW
dc.description.abstractSuper-resolution microscopy circumvents the diffraction limit of light, about 200 nm, and produces images with enhanced resolution that well-surpassed the strength of traditional light microscopes. The imaging of subcellular architecture and detailed morphology used to frustrate the traditional light microscope is carried out effortlessly with super-resolution techniques. Recently, cryogenic electron microscopy (short as Cryo-EM) was brought to the world and received accolades for allowing electron microscopy to visualize biological specimens with preserved structural integrity. However, the connection between image quality and cryogenic condition has never been clearly clarified. In response, this research aims to explore the applicability of the cryo-method on single-molecule microscopy. Importantly, we disclose the relationship between the time length of cryogenic freezing (short as cryo-freezing) and the ultra-structure of cells and discover the optimal temporal condition for the optimal representation of cellular details. Time length of 120s to 180s cryo-freezing revealed higher average brightness in widefield microscopy. Taking it further to SMLM, the specific time length of 120s to 150s cryo-freezing outperforms other temporal conditions by brighter visual output and more saturated fluorophore distribution, making it an ideal condition for SMLM imaging to explore the subcellular details of intact cells. In addition, we developed a convenient and simplistic machine for automatic operation to bolster both the validity and reproducibility of the research with superior precision and accuracy.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:26:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:26:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 3
1.2.1 Abbe Diffraction Limit and Rayleigh Criterion 3
1.2.2 Point Spread Function (PSF) 6
1.2.3 Super-resolution Fluorescence Microscopy 8
1.2.4 Fluorophore Blinking Mechanism 14
1.2.5 Expansion Microscopy (ExM) 17
1.2.6 Cryo-ExM 21
1.2.7 Primary Cilium 23
1.3 Research motivation 27
1.4 Thesis structure 28
Chapter 2 Material and Methods 29
2.1 Reagent 29
2.2 Antibodies 30
2.3 Cell culture 30
2.4 Device manufacture 31
2.5 Control board circuit design 32
2.6 Sample fixation 34
2.7 Ultra-Expansion Microscopy (U-ExM) 36
2.8 Immunofluorescence Staining 37
2.9 Hydrogel Re-embedding 37
2.10 Ex-dSTORM imaging and Image processing 38
2.11 Data analysis 40
Chapter 3 Result 41
3.1 Cryo-Acetone fixation outperforms Cryo-MeOH fixation. 41
3.2 Cryo-fixation remains a powerful tool in the study of primary cilium. 42
3.3 The difference in cryofixation duration gives rise to different fluorescence intensity 43
3.4 Freezing time duration influences the degree of molecular distribution. 46
Chapter 4 Conclusion 53
Reference 54
-
dc.language.isoen-
dc.title低溫冷凍固定法於超解析顯微技術之效能評估與分析zh_TW
dc.titlePerformance Evaluation and Analysis of Cryofixation In Superresolution Microscopyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃念祖;陳奕帆zh_TW
dc.contributor.oralexamcommitteeNien-Tsu Huang;Yih-Fan Chenen
dc.subject.keyword超解析顯微技術,冷凍固定法,膨脹顯微鏡,隨機光學重建顯微鏡,單分子定位顯微鏡,zh_TW
dc.subject.keywordSuper-resolution,Cryofixation,Expansion,dSTORM,Single-molecule localization microscopy,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202304070-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
14.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved