請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89862完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 顧家瑜 | zh_TW |
| dc.contributor.author | Chia-Yu Guh | en |
| dc.date.accessioned | 2023-09-22T16:26:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-13 | - |
| dc.identifier.citation | 1. Denchi, E.L. and T. de Lange, Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 2007. 448(7157): p. 1068-71.
2. Sfeir, A., et al., Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell, 2009. 138(1): p. 90-103. 3. Schmutz, I., et al., TRF2 binds branched DNA to safeguard telomere integrity. Nat Struct Mol Biol, 2017. 24(9): p. 734-742. 4. Zhang, X., et al., Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev, 1999. 13(18): p. 2388-99. 5. van Steensel, B., A. Smogorzewska, and T. de Lange, TRF2 protects human telomeres from end-to-end fusions. Cell, 1998. 92(3): p. 401-13. 6. Karlseder, J., et al., p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science, 1999. 283(5406): p. 1321-5. 7. Bryan, T.M., et al., Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J, 1995. 14(17): p. 4240-8. 8. Cesare, A.J. and R.R. Reddel, Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet, 2010. 11(5): p. 319-30. 9. Dunham, M.A., et al., Telomere maintenance by recombination in human cells. Nat Genet, 2000. 26(4): p. 447-50. 10. Dilley, R.L., et al., Break-induced telomere synthesis underlies alternative telomere maintenance. Nature, 2016. 539(7627): p. 54-58. 11. Cesare, A.J. and J.D. Griffith, Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol, 2004. 24(22): p. 9948-57. 12. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 13. Draskovic, I., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15726-31. 14. Sobinoff, A.P. and H.A. Pickett, Alternative Lengthening of Telomeres: DNA Repair Pathways Converge. Trends Genet, 2017. 33(12): p. 921-932. 15. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol, 2008. 10(2): p. 228-36. 16. Keskin, H., et al., Transcript-RNA-templated DNA recombination and repair. Nature, 2014. 515(7527): p. 436-9. 17. Ouyang, J., et al., RNA transcripts stimulate homologous recombination by forming DR-loops. Nature, 2021. 594(7862): p. 283-288. 18. Chu, H.P., et al., PAR-TERRA directs homologous sex chromosome pairing. Nat Struct Mol Biol, 2017. 24(8): p. 620-631. 19. Graf, M., et al., Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 2017. 170(1): p. 72-85 e14. 20. Hamperl, S., et al., Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell, 2017. 170(4): p. 774-786 e19. 21. Sollier, J., et al., Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell, 2014. 56(6): p. 777-85. 22. Arora, R., et al., RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun, 2014. 5: p. 5220. 23. Balk, B., et al., Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol, 2013. 20(10): p. 1199-205. 24. Cesare, A.J., et al., Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol, 2009. 16(12): p. 1244-51. 25. Fasching, C.L., et al., DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res, 2007. 67(15): p. 7072-7. 26. Yu, T.Y., Y.W. Kao, and J.J. Lin, Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A, 2014. 111(9): p. 3377-82. 27. Sanz, L.A. and F. Chedin, High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc, 2019. 14(6): p. 1734-1755. 28. Ramirez, P., et al., R-Loop Analysis by Dot-Blot. J Vis Exp, 2021(167). 29. Olson, E., et al., RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem, 2006. 281(51): p. 39517-33. 30. Chu, H.P., et al., TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 2017. 170(1): p. 86-101 e16. 31. Wu, L. and I.D. Hickson, The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature, 2003. 426(6968): p. 870-4. 32. Opresko, P.L., et al., Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem, 2002. 277(43): p. 41110-9. 33. Guh, C.Y., et al., XPF activates break-induced telomere synthesis. Nat Commun, 2022. 13(1): p. 5781. 34. Zha, S., C. Boboila, and F.W. Alt, Mre11: roles in DNA repair beyond homologous recombination. Nat Struct Mol Biol, 2009. 16(8): p. 798-800. 35. Sobinoff, A.P., et al., BLM and SLX4 play opposing roles in recombination-dependent replication at human telomeres. EMBO J, 2017. 36(19): p. 2907-2919. 36. Opresko, P.L., et al., POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem, 2005. 280(37): p. 32069-80. 37. Takahashi, H., et al., Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem, 2005. 280(7): p. 5611-21. 38. Min, J., W.E. Wright, and J.W. Shay, Clustered telomeres in phase-separated nuclear condensates engage mitotic DNA synthesis through BLM and RAD52. Genes Dev, 2019. 33(13-14): p. 814-827. 39. Minskaia, E., et al., Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A, 2006. 103(13): p. 5108-13. 40. Ma, Y., et al., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc Natl Acad Sci U S A, 2015. 112(30): p. 9436-41. 41. Wei, Y., et al., Coronavirus genomes carry the signatures of their habitats. PLoS One, 2020. 15(12): p. e0244025. 42. Di Giorgio, S., et al., Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci Adv, 2020. 6(25): p. eabb5813. 43. Simmonds, P., Rampant C-->U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories. mSphere, 2020. 5(3). 44. Estevez, A.M. and L. Simpson, Uridine insertion/deletion RNA editing in trypanosome mitochondria--a review. Gene, 1999. 240(2): p. 247-60. 45. Pecori, R., et al., Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat Rev Genet, 2022. 23(8): p. 505-518. 46. Chen, S.H., et al., Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science, 1987. 238(4825): p. 363-6. 47. Powell, L.M., et al., A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell, 1987. 50(6): p. 831-40. 48. Anant, S., A.J. MacGinnitie, and N.O. Davidson, The binding of apobec-1 to mammalian apo B RNA is stabilized by the presence of complementation factors which are required for post-transcriptional editing. Nucleic Acids Symp Ser, 1995(33): p. 99-102. 49. Rosenberg, B.R., et al., Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3' UTRs. Nat Struct Mol Biol, 2011. 18(2): p. 230-6. 50. Blanc, V., et al., Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol, 2014. 15(6): p. R79. 51. Harjanto, D., et al., RNA editing generates cellular subsets with diverse sequence within populations. Nat Commun, 2016. 7: p. 12145. 52. Harris, R.S., J.F. Hultquist, and D.T. Evans, The restriction factors of human immunodeficiency virus. J Biol Chem, 2012. 287(49): p. 40875-83. 53. Sheehy, A.M., et al., Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature, 2002. 418(6898): p. 646-50. 54. Fehrholz, M., et al., The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses. J Gen Virol, 2012. 93(Pt 3): p. 565-576. 55. Milewska, A., et al., APOBEC3-mediated restriction of RNA virus replication. Sci Rep, 2018. 8(1): p. 5960. 56. Friedman, N., et al., Transcriptomic profiling and genomic mutational analysis of Human coronavirus (HCoV)-229E -infected human cells. PLoS One, 2021. 16(2): p. e0247128. 57. Rayon-Estrada, V., et al., Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proc Natl Acad Sci U S A, 2017. 114(50): p. 13296-13301. 58. Rabinovici, R., et al., ADAR1 is involved in the development of microvascular lung injury. Circ Res, 2001. 88(10): p. 1066-71. 59. Samelson, A.J., et al., BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat Cell Biol, 2022. 24(1): p. 24-34. 60. Kim, K., et al., The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness. Sci Rep, 2022. 12(1): p. 14972. 61. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014. 13(2): p. 397-406. 62. Chu, H.P., et al., iDRiP for the systematic discovery of proteins bound directly to noncoding RNA. Nat Protoc, 2021. 16(7): p. 3672-3694. 63. Anderson, E.C., S.L. Hunt, and R.J. Jackson, Internal initiation of translation from the human rhinovirus-2 internal ribosome entry site requires the binding of Unr to two distinct sites on the 5' untranslated region. J Gen Virol, 2007. 88(Pt 11): p. 3043-3052. 64. Blagden, S.P., et al., Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol, 2009. 334(1): p. 186-97. 65. Lee, S., et al., The SARS-CoV-2 RNA interactome. Mol Cell, 2021. 81(13): p. 2838-2850 e6. 66. Schmidt, N., et al., The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat Microbiol, 2021. 6(3): p. 339-353. 67. Navaratnam, N., et al., Evolutionary origins of apoB mRNA editing: catalysis by a cytidine deaminase that has acquired a novel RNA-binding motif at its active site. Cell, 1995. 81(2): p. 187-95. 68. Anant, S., A.J. MacGinnitie, and N.O. Davidson, apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, is a novel RNA-binding protein. J Biol Chem, 1995. 270(24): p. 14762-7. 69. Chen, Z., et al., Interactomes of SARS-CoV-2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO J, 2021. 40(17): p. e107776. 70. Blanc, V., et al., Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA, 2019. 25(1): p. 70-81. 71. Nakata, Y., et al., Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Res, 2023. 51(2): p. 783-795. 72. Wang, K., et al., RNA-binding protein RBM47 stabilizes IFNAR1 mRNA to potentiate host antiviral activity. EMBO Rep, 2021. 22(8): p. e52205. 73. Kim, Y.E., et al., RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber assembly during epithelial-to-mesenchymal transition. Oncogene, 2019. 38(38): p. 6521-6536. 74. Cieply, B., et al., Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins. Cell Rep, 2016. 15(2): p. 247-55. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89862 | - |
| dc.description.abstract | 大部分癌細胞透過活化端粒酶(telomerase)來延長端粒,但有10~15%的癌細胞依靠一種稱為非典型端粒延長(Alternative Lengthening of Telomeres, 簡稱ALT)的機制來延長端粒。目前已知ALT會透過同源重組(homologous recombination, HR)及斷裂誘導DNA合成的機制來促進端粒延長,並且其中有TERRA (telomeric repeat-containing RNA) RNA的參與。TERRA是一種在ALT癌細胞裡高度表現的長鏈非編碼RNA (long non-coding RNA, lncRNA),能與端粒DNA形成RNA: DNA相連的複合結構(此結構中包含R-loop)。然而TERRA如何參與ALT的機制仍不明確。為了研究TERRA所扮演的角色,我們利用iDRiP-MS (identification of direct RNA-interacting proteins mass spectrometry,RNA 相互作用蛋白質譜鑑定)方法在ALT癌細胞體內鑑定TERRA相互作用蛋白質,這是一種通過紫外線交聯(UV-crosslinking)來捕獲RNA相互作用蛋白的方法。結果顯示TERRA與許多DNA損傷反應、DNA修復、複製叉拆解和DNA複製相關蛋白具有交互作用。我們接著透過過量表達RNase H1,發現消除TERRA R-loop會導致ALT活性受到抑制以及端粒聚集現象(telomere clustering)的減少。而剔除RNase H1則會促進ALT活性並使端粒聚集現象增加。我們並發現剔除RNase H1所導致的TERRA R-loop增加,會促進TERRA 相互作用蛋白(BLM、XPF 和 RPA70)向 ALT 端粒募集,這意味著TERRA R-loop會透過增加端粒配對和向端粒招募 DNA 損傷反應蛋白來促進同源重組。我們的研究表明TERRA與DNA損傷反應蛋白相互作用,並調節ALT癌細胞端粒的延長。
新型冠狀病毒(SARS-CoV-2)在短時間內引發了嚴重大流行,導致全球經濟、健康和社會的問題。由於其快速傳播,迄今已積累大量的突變株。病毒變異可能導致更具傳染性以及能逃避疫苗的病毒株;因此,研究SARS-CoV-2進化機制以及宿主的環境是如何參與其中至關重要。為了研究SARS-CoV-2及其宿主的交互作用,我們通過iDRiP-MS系統化地捕獲人類肺癌細胞(Calu3細胞)中與SARS-CoV-2進行交互作用的蛋白質,我們找到了涉及多種途徑的蛋白質群,包括轉譯作用(例如 EIF4B、EIF4H、LARP1、CSDE1)、RNA 編輯(例如 A1CF、RBM47、APOBEC3F)、應激顆粒組成(例如 TIAL1、G3BP1、IGF2BP3) 和免疫反應相關蛋白。透過基因剔除實驗,我們發現其中兩個交互作用蛋白APOBEC1和A1CF的缺失會使Calu3細胞中的SARS-CoV-2 RNA減少,顯示其可能促進病毒複製,而APOBEC3F和RBM47則呈現相反結果,顯示其可能抑制病毒複製。我們亦發現,APOBEC3F在人類肺癌細胞中的表現量會受到感染SARS-CoV-2的影響而上調。我們的研究結果為進一步研究 SARS-CoV-2 病毒適應性和復制機制提供了有價值的信息。 | zh_TW |
| dc.description.abstract | Most cancers activate telomerase to elongate their telomeres; however, a fraction of cancer cells depends on a mechanism called alternative lengthening of telomere (ALT) to compensate for telomere loss to reach immortality. It is commonly accepted that this mechanism is achieved by raising the homologous recombination and break-induced DNA synthesis among telomeres, with the participation of telomeric repeat-containing RNA (TERRA). TERRA is a long non-coding RNA (lncRNA) highly expressed in ALT cells and can form RNA: DNA hybrids (including R-loop structure) at ALT telomeres. However, how TERRA involves in human ALT tumors remains unclear. To investigate the role of TERRA in the ALT mechanism, we identified TERRA interactomes in vivo by performing iDRiP (identification of direct RNA-interacting proteins), which captures RNA-interacting proteins by ultra-light-crosslinking of RNAs and proteins in human ALT cells. We found a subset of TERRA interactomes relative to DNA damage response, DNA repair, fork processing, and DNA replication. We then found that eliminating TERRA R-loops by overexpression of RNase H1 led to the inhibition of ALT activity and the reduction of telomere clustering events, while depletion of RNase H1 increases ALT activity and telomere clustering events. Moreover, the upregulation of telomeric R-loops caused by the depletion of RNase H1 promotes the recruitment of TERRA interacting proteins—BLM, XPF, and RPA70 to ALT telomeres, implying that TERRA R-loops promote homologous recombination via increasing telomere pairing. In sum, our studies suggest that TERRA associates with DNA damage-responsive proteins and regulates telomere lengthening in ALT cancer cells.
The SARS-CoV-2 virus has caused a severe pandemic shortly, leading to serious economic, health, and social problems worldwide. It has accumulated numerous mutant strains due to its rapid spreading. Virus variability can cause more infectious and vaccine-evading virus strains; hence, it is crucial to investigate the mechanism of SARS-CoV-2 evolution and how the host machinery is involved. To study the interplay between SARS-CoV-2 and its host, we systematically captured SARS-CoV-2 interacting proteins in vivo by iDRiP-MS in Calu3 cells, a human lung cancer cell line, and revealed SARS-CoV2 interacting proteins that involve in a large variety of pathways including translations (e.g. EIF4B, EIF4H, LARP1, CSDE1), RNA editing (e.g. A1CF, RBM47, APOBEC3F), stress granule composition (e.g. TIAL1, G3BP1, IGF2BP3), and immune response. Silencing SARS-CoV-2 interacting proteins APOBEC1 and A1CF decreased the amount of SARS-CoV-2 in Calu3 cells, suggesting they might promote viral replication. In contrast, depletion of APOBEC3F and RBM47 showed the opposite result, suggesting that they might inhibit viral replication. Furthermore, we found that the expression of APOBEC3F in human lung cancer cells is upregulated upon infection, suggesting its function in SARS-CoV-2 RNA viral progeny inhibition. Our study provides valuable information for further investigations into SARS-CoV-2 viral fitness and replication mechanism. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:26:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:26:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract v Contents viii Content of figures xiii Content of supplementary figures xv Content of tables xvi Abbreviations xvii Chapter 1 Introduction of the ALT TERRA Project 1 1.1 Telomere 1 1.2 Alternative lengthening of telomeres (ALT) 1 1.3 Telomeric repeat-containing RNA (TERRA) 2 1.4 RNA-DNA hybrid 3 Chapter 2 Materials and Methods of ALT Project 5 2.1 Cell culture 5 2.2 Plasmids 6 2.3 Cell preparation for Identification of direct RNA interacting proteins (iDRiP) 8 2.4 Identification of direct RNA interacting proteins (iDRiP) 8 2.5 Quantitative mass spectrometry 12 2.6 Statistical analysis for iDRiP-MS 14 2.7 RNA extraction 15 2.8 cDNA synthesis 16 2.9 Real-time quantitative PCR (RT-qPCR) 16 2.10 siRNA transfection 17 2.11 Western blot 18 2.12 RNA Slot blotting 19 2.13 Preparing samples for immunofluorescence and fluorescence in situ hybridization (FISH) 20 2.14 Immunofluorescence 21 2.15 Immunofluorescence RNA Fluorescence in situ hybridization (Immuno RNA-FISH) 21 2.16 Immunofluorescence DNA FISH 22 2.17 Quantitative and statistical analysis for images 23 2.18 DNA RNA immunoprecipitation (DRIP-qPCR) 23 Chapter 3 Results of the ALT TERRA Project 26 3.1 Overexpression of RNase H1 depletes TERRA R-loops in ALT cells 26 3.2 TERRA R-loops contribute to telomere clustering in ALT cells 27 3.3 Telomeric R-loops promote ALT activities 28 3.4 TERRA interacts with proteins, including a group of DNA damage response proteins in ALT cells 29 3.5 TERRA R-loops recruit DNA damage proteins to ALT telomeres 32 3.6 TERRA R-loops are required for BLM recruitment to ALT telomeres 33 3.7 TERRA R-loops and BLM are required for telomere clustering in ALT cells 34 Chapter 4 Discussion of the ALT TERRA Project 62 Chapter 5 Introduction of the SARS-CoV-2 Project 64 5.1 SARS-CoV-2 virus and its mutations 64 5.2 Mutation events in SARS-CoV-2 virus 65 5.3 RNA editing by the C-to-U deaminase—APOBEC family 66 5.4 APOBECs and virus restriction 68 Chapter 6 Materials and Methods of the SARS-CoV-2 Project 70 6.1 Cell culture and viruses 70 6.2 SARS-CoV-2 infected cell preparation for iDRiP 71 6.3 Identification of direct RNA interacting proteins (iDRiP) 72 6.4 Quantitative mass spectrometry 75 6.5 Viral infection for knockdown experiments 77 6.6 RNA extraction 78 6.7 cDNA synthesis 79 6.8 Real-time quantitative PCR (RT-qPCR) 79 6.9 siRNA transfection 80 6.10 Plaque assay 81 Chapter 7 Results of the SARS-CoV-2 Project 82 7.1 SARS-CoV-2 RNA interacts with several proteins involved in translation, RNA editing, stress granule composition, immune response, and viral defense 82 7.2 Gene Ontology showed SARS-CoV-2 interactome involved in mRNA stabilization, gene regulation, mRNA splicing 84 7.3 C-to-U mutations are higher than other mutations in the SARS-CoV-2 transcriptome 85 7.4 APOBEC3F and APOBEC3G mRNA levels were upregulated upon SARS-CoV-2 infection in Calu3 cells 85 7.5 RBM47 and APOBEC3F restrict SARS-CoV-2 viral replication, while APOBEC1 and A1CF promote virus replication in human lung cancer cells 86 Chapter 8 Discussion of the SARS-CoV-2 Project 103 Chapter 9 Supplementary information 105 Chapter 10 References 117 | - |
| dc.language.iso | en | - |
| dc.subject | APOBEC | zh_TW |
| dc.subject | RNA編輯 | zh_TW |
| dc.subject | 端粒R-loop | zh_TW |
| dc.subject | TERRA | zh_TW |
| dc.subject | iDRiP | zh_TW |
| dc.subject | 新型冠狀病毒 | zh_TW |
| dc.subject | 非典型端粒延長模式 | zh_TW |
| dc.subject | APOBEC | en |
| dc.subject | TERRA | en |
| dc.subject | ALT | en |
| dc.subject | telomeric R-loop | en |
| dc.subject | iDRiP | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | RNA editing | en |
| dc.title | 鑑定非典型端粒延長癌症中的TERRA RNA交互作用蛋白及人類肺癌細胞中SARS-CoV-2病毒核酸相互作用蛋白質 | zh_TW |
| dc.title | Identifying TERRA interacting proteins in ALT cancers and SARS-CoV-2 interactome in human lung cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳律佑;李家偉;陳世淯;張淑媛 | zh_TW |
| dc.contributor.oralexamcommittee | Liuh-Yow Chen;Chia-Wei Li;Shih-Yu Chen;Sui-Yuan Chang | en |
| dc.subject.keyword | TERRA,非典型端粒延長模式,端粒R-loop,iDRiP,新型冠狀病毒,RNA編輯,APOBEC, | zh_TW |
| dc.subject.keyword | TERRA,ALT,telomeric R-loop,iDRiP,SARS-CoV-2,RNA editing,APOBEC, | en |
| dc.relation.page | 121 | - |
| dc.identifier.doi | 10.6342/NTU202303486 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 8.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
