請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89852完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊裕澤 | zh_TW |
| dc.contributor.advisor | Yuh-Jzer Joung | en |
| dc.contributor.author | 李承翰 | zh_TW |
| dc.contributor.author | Cheng-Han Li | en |
| dc.date.accessioned | 2023-09-22T16:23:57Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6):679–698.
Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1):11–15. Fang, Z., Huang, X., Ye, K., Ji, J., Wu, Q., Ma, X., and Xie, Y. (2021). An algorithm for extracting groove rail area based on improved hough transform. In MATEC Web of Conferences, volume 336, page 02025. EDP Sciences. Fel, L. F., Zinner, C., Kadiofsky, T., Pointner, W., Weichselbaum, J., and Reisner, C. (2018). Odas–an anti-collision assistance system for light rail vehicles and further development. Gavrilova, N., Dailid, I., Molodyakov, S., Boltenkova, E., Korolev, I., and Popov, P. (2018). Application of computer vision algorithms in the problem of coupling of the locomotive with railcars. In 2018 International Symposium on Consumer Technologies (ISCT), pages 1–4. IEEE. Gebauer, O., Pree, W., and Stadlmann, B. (2012). Autonomously driving trains on open tracks—concepts, system architecture and implementation aspects. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587. Glenn, J., Changyu, L., Adam, H., Lijun, Y., changyu98, Prashant, R., and Trevor, S. (2020). ultralytics/ yolov5: Initial release. https://doi.org/10.5281/zenodo. 3908560. Haseeb, M. A., Guan, J., Ristic-Durrant, D., and Gräser, A. (2018). Disnet: a novel method for distance estimation from monocular camera. 10th Planning, Perception and Navigation for Intelligent Vehicles (PPNIV18), IROS. Kaleli, F. and Akgul, Y. S. (2009). Vision-based railroad track extraction using dy namic programming. In 2009 12th International IEEE Conference on Intelligent Transportation Systems, pages 1–6. IEEE. Kudinov, I. A. and Kholopov, I. S. (2020). Perspective-2-point solution in the problem of indirectly measuring the distance to a wagon. In 2020 9th Mediterranean Conference on Embedded Computing (MECO), pages 1–5. IEEE. Land, E. H. and McCann, J. J. (1971). Lightness and retinex theory. J. Opt. Soc. Am., 61(1):1–11. https://opg.optica.org/abstract.cfm?URI=josa-61-1-1. Li, X., Cong, Z., and Zhang, Y. (2021). Rail track edge detection methods based on im proved hough transform. In 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), pages 12–16. IEEE. Lin, A. (2018). How do i adjust brightness, contrast and vibrance with opencv python? https://stackoverflow.com/a/50477151. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In European conference on computer vision, pages 21–37. Springer. Liu, Y., Gunnell, E., Sun, Y., and Zheng, H. (2022). An object-driven collision detection with 2d cameras using artificial intelligence and computer vision. In CS IT Conference Proceedings, volume 12. CS IT Conference Proceedings. Mukojima, H., Deguchi, D., Kawanishi, Y., Ide, I., Murase, H., Ukai, M., Nagamine, N., and Nakasone, R. (2016). Moving camera background-subtraction for obstacle detection on railway tracks. In 2016 IEEE international conference on image processing (ICIP), pages 3967–3971. IEEE. Prewitt, J. M. (1970). Object enhancement and extraction. Picture processing and Psychopictorics, 10(1):15–19. Qi, Z., Tian, Y., and Shi, Y. (2013). Efficient railway tracks detection and turnouts recog nition method using hog features. Neural Computing and Applications, 23(1):245–254. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Uni fied, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788. Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. Ristić-Durrant, D., Franke, M., and Michels, K. (2021). A review of vision-based on board obstacle detection and distance estimation in railways. Sensors, 21(10):3452. Ristić-Durrant, D., Haseeb, M. A., Banić, M., Stamenković, D., Simonović, M., and Nikolić, D. (2022). Smart on-board multi-sensor obstacle detection system for improve ment of rail transport safety. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 236(6):623–636. Roberts, L. (1965). Machine perception of 3-d solids-series. optical and electro-optical information processing. Rodriguez, L. F., Uribe, J. A., and Bonilla, J. V. (2012). Obstacle detection over rails using hough transform. In 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA), pages 317–322. IEEE. Sobel, I. and Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing. a talk at the Stanford Artificial Project in, pages 271–272. Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022). Yolov7: Trainable bag of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696. Wang, Z., Wu, X., Yan, Y., Jia, C., Cai, B., Huang, Z., Wang, G., and Zhang, T. (2015). An inverse projective mapping-based approach for robust rail track extraction. In 2015 8th International Congress on Image and Signal Processing (CISP), pages 888–893. IEEE. Weichselbaum, J., Zinner, C., Gebauer, O., and Pree, W. (2013). Accurate 3d-vision-based obstacle detection for an autonomous train. Computers in Industry, 64(9):1209–1220. Ye, T., Wang, B., Song, P., and Li, J. (2018). Automatic railway traffic object detec tion system using feature fusion refine neural network under shunting mode. Sensors, 18(6):1916. Ye, T., Zhang, X., Zhang, Y., and Liu, J. (2020). Railway traffic object detection using differential feature fusion convolution neural network. IEEE Transactions on Intelligent Transportation Systems, 22(3):1375–1387. 交通部台灣鐵路管理局 (2021). 110年報. https://www.railway.gov.tw/tra-tip-web/tip/file/c4a1a90e-763a-416c-ae83-991feea0c6fe. 交通部臺灣鐵路管理局鐵路建設作業程序 (2018). https://www.railway.gov.tw/tra-tip-web/tip/file/b6f243c3-b348-4bc3-b83d-7cf804d4bfcd. 台灣高鐵公司 (2022). 111年度安全管理報告. https://www.thsrc.com.tw/ArticleContent/69240266-e341-490d-bed8-f495280731d6/assets/8539ed12-cf3b-42c6-a757-435184578946.pdf. 國家運輸安全調查委員會 (2021). 110年鐵道列車紀錄裝置普查報告. https://www.ttsb.gov.tw/media/4974/110%E5%B9%B4%E9%90%B5%E9%81%93%E5%88%97%E8%BB%8A%E7%B4%80%E9%8C%84%E8%A3%9D%E7%BD%AE%E6%99%AE%E6%9F%A5%E5%A0%B1%E5%91%8A.pdf?mediaDL=true. 臺灣交通鐵道影像 (2022). 2021.12 台鐵環島順行 gps 參數路程景台北-台北 408 次 2 次-122 次 taipei taipei. https://youtu.be/tYEsoH_Cob | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89852 | - |
| dc.description.abstract | 台鐵因長時間行駛在開放、非高架的環境,常常受到外物侵入的困擾,造成輕則誤點、重則人員傷亡的事故。然而,台鐵非平交道段現行的障礙物偵測方式主要依靠人員發現後撥打緊急專線,耗時且仰賴人力。駕駛員往往會是最先觀測到障礙物的人員,故障礙物偵測系統應架設在火車頭,輔助駕駛員識別障礙物,並提供有用的資訊協助其制定避障決策。
因此,本研究設計了一套易於部署、架設於火車頭的障礙物辨識與測距系統,可協助駕駛員辨識火車前方的障礙物,其種類以及距離,有了這些資訊即可推知火車撞上障礙物的時間,駕駛員可依此制定出最適當的避障策略。 本研究的系統以成像原理蘊含的幾何關係,利用軌距和物件框作為參考物進行距離估計,其中軌距以Canny Edge Operator和Hough transform提取出的鐵軌計算得出,物件框則以當今效能與精準度兼具的YOLOv7物件辨識演算法提取。我們利用實地錄製的影像作為資料集進行實驗,接著就「滯空物判斷與距離估計」、「以物件尺寸提升距離估計準度」進行延伸探討,最終從實驗結果中,我們得出本系統在距離估計準確度方面有良好的表現,與其他類似研究相比,還可兼備物件辨識與滯空物判斷的功能。 | zh_TW |
| dc.description.abstract | Trains of Taiwan Railway run in an open, non-elevated environment, so it is sometimes disturbed by the intrusion of foreign objects, which could cause delays or even accidents with injuries or fatalities. However, the current method of detecting obstacles on the non-level crossing sections of the Taiwan Railway relies mainly on personnel to call the emergency hotline after observing obstacles, which is time-consuming and relies on labor. Drivers are often the first to observe obstacles, therefore, obstacle detection system should be installed at the front of the train to assist drivers in identifying obstacles and provide useful information to help them make decisions on obstacle avoidance.
In this study, an easily deployable obstacle recognition and distance measurement system is designed to help drivers recognize the obstacles in front of the train, their types and distances. With these information, the system can infer the time when the train hits the obstacles so as to help the drivers take appropriate actions accordingly. The system in this study utilizes the geometrical relationship embedded in the imaging principle to estimate the distance using the track gauge and the bounding box of the detected objects as references, where the track gauge is calculated from the railroad tracks extracted by Canny Edge Operator and Hough transform, and we used YOLOv7 as object detection model, which is the most efficient and accurate algorithm nowadays. We utilize the field-recorded images as a data set for the experiments, and then extend the discussion on "distinguishing and ranging objects in the air" and "improving distance estimation accuracy with object size". Our experiments show that, compared with existing methods, our system has good accuracy for estimating object distances. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:23:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:23:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 文獻探討 4 2.1 自駕車技術與鐵路障礙物偵測 4 2.2 列車障礙物測距方法 5 2.3 Vision-based 軌道障礙物測距 7 2.3.1 鐵軌偵測 7 2.3.1.1 Canny Edge Detection 8 2.3.1.2 Hough Transform 10 2.3.2 障礙物偵測 12 2.3.2.1 YOLO 物件偵測演算法 13 2.3.3 距離估計 13 2.4 AI-based 單目視覺測距的困境 14 2.5 文獻探討總結 16 第三章 研究方法 18 3.1 距離估計方法 18 3.2 研究架構 20 3.3 模型架構 21 3.3.1 鐵軌提取階段 21 3.3.2 物件偵測階段 22 3.3.3 距離估計階段 23 3.4 資料集 23 3.5 實驗方法 24 3.5.1 鐵軌提取 24 3.5.2 距離估計 25 3.5.2.1 靜態測試 25 3.5.2.2 動態測試 25 3.5.2.3 模擬畫面與實際畫面的差異 26 3.5.3 延伸探討 27 3.5.3.1 滯空物 27 3.5.3.2 利用環境提升精準度 27 3.6 研究驗證 28 第四章 實驗細節與結果 29 4.1 鐵軌提取 29 4.1.1 影像前處理 33 4.1.1.1 對比度 33 4.1.1.2 高斯模糊 35 4.1.1.3 對比度+高斯模糊 37 4.1.2 算法改良 38 4.1.2.1 樣式分析(pattern analysis) 38 4.1.2.2 預先代入鐵軌位置 40 4.2 距離估計 42 4.2.1 靜態測試 42 4.2.2 動態測試 45 4.3 延伸討論 47 4.3.1 滯空物體的處理 47 4.3.1.1 判斷滯空物的規則 49 4.3.1.2 針對滯空物以不同方式估計距離 50 4.3.2 利用物體尺寸改善精準度 53 4.4 小結 56 第五章 結論 58 5.1 研究成果 58 5.2 研究貢獻 59 5.3 研究限制 60 5.4 未來研究方向 61 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 物件辨識 | zh_TW |
| dc.subject | 影像測距 | zh_TW |
| dc.subject | 鐵路障礙物偵測 | zh_TW |
| dc.subject | 單目視覺 | zh_TW |
| dc.subject | Object Detection | en |
| dc.subject | Monocular Vision | en |
| dc.subject | Railway Obstacles Detection | en |
| dc.subject | Vision-Based Distance Estimation | en |
| dc.title | 架設於火車頭之單目視覺鐵道障礙物測距系統 | zh_TW |
| dc.title | Monocular Railway Obstacle Ranging System on Locomotives | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳炳宇;楊傳凱 | zh_TW |
| dc.contributor.oralexamcommittee | Bing-Yu Chen;Chuan-Kai Yang | en |
| dc.subject.keyword | 單目視覺,鐵路障礙物偵測,影像測距,物件辨識, | zh_TW |
| dc.subject.keyword | Monocular Vision,Railway Obstacles Detection,Vision-Based Distance Estimation,Object Detection, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202303543 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 42.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
