請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅宇軒 | zh_TW |
| dc.contributor.advisor | Yu-Syuan Luo | en |
| dc.contributor.author | 應任彥 | zh_TW |
| dc.contributor.author | Ren-Yan Ying | en |
| dc.date.accessioned | 2023-09-22T16:19:14Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Ahrens, L., & Bundschuh, M. (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem, 33(9), 1921-1929. https://doi.org/10.1002/etc.2663
Alexander, B. H., Olsen, G. W., Burris, J. M., Mandel, J. H., & Mandel, J. S. (2003). Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med, 60(10), 722-729. https://doi.org/10.1136/oem.60.10.722 Alsmeyer, Y., Childs, W., Flynn, R., Moore, G., & Smeltzer, J. (1994). Organofluorine chemistry: Principles and commercial applications. In (Vol. 121): Plenum Press New York. Amstutz, V. H., Cengo, A., Gehres, F., Sijm, D., & Vrolijk, M. F. (2022). Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology, 480, 153312. https://doi.org/10.1016/j.tox.2022.153312 Arvaniti, O. S., & Stasinakis, A. S. (2015). Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ, 524-525, 81-92. https://doi.org/10.1016/j.scitotenv.2015.04.023 Arzumanian, V. A., Kiseleva, O. I., & Poverennaya, E. V. (2021). The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci, 22(23), 13135. https://doi.org/10.3390/ijms222313135 Banks, R. E., Smart, B. E., & Tatlow, J. (2013). Organofluorine chemistry: principles and commercial applications. Springer Science & Business Media. Barry, V., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect, 121(11-12), 1313-1318. https://doi.org/10.1289/ehp.1306615 Benford, D., De Boer, J., Carere, A., Di Domenico, A., Johansson, N., Schrenk, D., Schoeters, G., De Voogt, P., & Dellatte, E. (2008). Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA J, 653, 1-131. Benskin, J. P., De Silva, A. O., & Martin, J. W. (2010). Isomer profiling of perfluorinated substances as a tool for source tracking: a review of early findings and future applications. Rev Environ Contam Toxicol, 208, 111-160. https://doi.org/10.1007/978-1-4419-6880-7_2 Bonefeld-Jorgensen, E. C., Long, M., Fredslund, S. O., Bossi, R., & Olsen, J. (2014). Breast cancer risk after exposure to perfluorinated compounds in Danish women: a case-control study nested in the Danish National Birth Cohort. Cancer Causes Control, 25(11), 1439-1448. https://doi.org/10.1007/s10552-014-0446-7 Buchser, W., Collins, M., Garyantes, T., Guha, R., Haney, S., Lemmon, V., Li, Z., & Trask, O. J. (2014). Assay development guidelines for image-based high content screening, high content analysis and high content imaging. Assay guidance manual [Internet]. Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag, 7(4), 513-541. https://doi.org/10.1002/ieam.258 Butenhoff, J. L., Bjork, J. A., Chang, S.-C., Ehresman, D. J., Parker, G. A., Das, K., Lau, C., Lieder, P. H., van Otterdijk, F. M., & Wallace, K. B. (2012). Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reproductive Toxicology, 33(4), 513-530. Carlson, L. M., Angrish, M., Shirke, A. V., Radke, E. G., Schulz, B., Kraft, A., Judson, R., Patlewicz, G., Blain, R., Lin, C., Vetter, N., Lemeris, C., Hartman, P., Hubbard, H., Arzuaga, X., Davis, A., Dishaw, L. V., Druwe, I. L., Hollinger, H., . . . Thayer, K. A. (2022). Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environ Health Perspect, 130(5), 56001. https://doi.org/10.1289/EHP10343 Cheng, J., Lv, S., Nie, S., Liu, J., Tong, S., Kang, N., Xiao, Y., Dong, Q., Huang, C., & Yang, D. (2016). Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquat Toxicol, 176, 45-52. https://doi.org/10.1016/j.aquatox.2016.04.013 Cordner, A., De La Rosa, V. Y., Schaider, L. A., Rudel, R. A., Richter, L., & Brown, P. (2019). Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. Journal of Exposure Science & Environmental Epidemiology, 29(2), 157-171. Costello, E., Rock, S., Stratakis, N., Eckel, S. P., Walker, D. I., Valvi, D., Cserbik, D., Jenkins, T., Xanthakos, S. A., Kohli, R., Sisley, S., Vasiliou, V., La Merrill, M. A., Rosen, H., Conti, D. V., McConnell, R., & Chatzi, L. (2022). Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis. Environ Health Perspect, 130(4), 46001. https://doi.org/10.1289/EHP10092 Cui, L., Zhou, Q. F., Liao, C. Y., Fu, J. J., & Jiang, G. B. (2009). Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol, 56(2), 338-349. https://doi.org/10.1007/s00244-008-9194-6 Dambach, D. M., Andrews, B. A., & Moulin, F. (2005). New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol, 33(1), 17-26. https://doi.org/10.1080/01926230590522284 Dasgupta, S., Reddam, A., Liu, Z., Liu, J., & Volz, D. C. (2020). High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant. Environ Pollut, 256, 113550. https://doi.org/10.1016/j.envpol.2019.113550 de Cock, M., de Boer, M. R., Lamoree, M., Legler, J., & van de Bor, M. (2014). Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants - a Dutch prospective cohort study. Environ Health, 13(1), 106. https://doi.org/10.1186/1476-069X-13-106 Donato, M., & Tolosa, L. (2021). High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants (Basel), 10(1), 106. https://doi.org/10.3390/antiox10010106 Elje, E., Mariussen, E., Moriones, O. H., Bastus, N. G., Puntes, V., Kohl, Y., Dusinska, M., & Runden-Pran, E. (2020). Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model. Nanomaterials (Basel), 10(3), 545. https://doi.org/10.3390/nano10030545 EPA. (2019). Per and Polyfluoroalkyl Substances (PFAS) Action Plan. EPA: Washington, DC, USA. Eriksson, U., Haglund, P., & Karrman, A. (2017). Contribution of precursor compounds to the release of per- and polyfluoroalkyl substances (PFASs) from waste water treatment plants (WWTPs). J Environ Sci (China), 61, 80-90. https://doi.org/10.1016/j.jes.2017.05.004 Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B., Korninger, F., May, B., Milacic, M., Roca, C. D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Viteri, G., Weiser, J., . . . D'Eustachio, P. (2018). The Reactome Pathway Knowledgebase. Nucleic Acids Res, 46(D1), D649-D655. https://doi.org/10.1093/nar/gkx1132 Fei, C., McLaughlin, J. K., Lipworth, L., & Olsen, J. (2009). Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod, 24(5), 1200-1205. https://doi.org/10.1093/humrep/den490 Filgo, A. J., Quist, E. M., Hoenerhoff, M. J., Brix, A. E., Kissling, G. E., & Fenton, S. E. (2015). Perfluorooctanoic acid (PFOA)–induced liver lesions in two strains of mice following developmental exposures: PPARα is not required. Toxicologic Pathology, 43(4), 558-568. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 24(7), 908-922. https://doi.org/10.1038/s41591-018-0104-9 Geiger, S. D., Yao, P., Vaughn, M. G., & Qian, Z. (2021). PFAS exposure and overweight/obesity among children in a nationally representative sample. Chemosphere, 268, 128852. https://doi.org/10.1016/j.chemosphere.2020.128852 Grice, M. M., Alexander, B. H., Hoffbeck, R., & Kampa, D. M. (2007). Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med, 49(7), 722-729. https://doi.org/10.1097/JOM.0b013e3180582043 Hallberg, I., Kjellgren, J., Persson, S., Orn, S., & Sjunnesson, Y. (2019). Perfluorononanoic acid (PFNA) alters lipid accumulation in bovine blastocysts after oocyte exposure during in vitro maturation. Reprod Toxicol, 84, 1-8. https://doi.org/10.1016/j.reprotox.2018.11.005 Hekster, F. M., Laane, R. W., & de Voogt, P. (2003). Environmental and toxicity effects of perfluoroalkylated substances. Rev Environ Contam Toxicol, 179, 99-121. https://doi.org/10.1007/0-387-21731-2_4 Houten, S. M., Denis, S., Argmann, C. A., Jia, Y., Ferdinandusse, S., Reddy, J. K., & Wanders, R. J. (2012). Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. Journal of Lipid Research, 53(7), 1296-1303. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1), 44-57. https://doi.org/10.1038/nprot.2008.211 Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Dis Model Mech, 2(5-6), 231-237. https://doi.org/10.1242/dmm.001180 Jain, R. B. (2018). Time trends over 2003-2014 in the concentrations of selected perfluoroalkyl substances among US adults aged >= 20 years: Interpretational issues. Science of the Total Environment, 645, 946-957. https://doi.org/10.1016/j.scitotenv.2018.07.198 Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., Loney, F., May, B., Milacic, M., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Weiser, J., . . . D'Eustachio, P. (2020). The reactome pathway knowledgebase. Nucleic Acids Res, 48(D1), D498-D503. https://doi.org/10.1093/nar/gkz1031 Jensen, T. K., Andersen, L. B., Kyhl, H. B., Nielsen, F., Christesen, H. T., & Grandjean, P. (2015). Association between Perfluorinated Compound Exposure and Miscarriage in Danish Pregnant Women. PloS one, 10(4), e0123496. https://doi.org/ARTN e0123496 10.1371/journal.pone.0123496 Jin, R., McConnell, R., Catherine, C., Xu, S., Walker, D. I., Stratakis, N., Jones, D. P., Miller, G. W., Peng, C., Conti, D. V., Vos, M. B., & Chatzi, L. (2020). Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. Environ Int, 134, 105220. https://doi.org/10.1016/j.envint.2019.105220 Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27 Kato, K., Wong, L. Y., Jia, L. T., Kuklenyik, Z., & Calafat, A. M. (2011). Trends in Exposure to Polyfluoroalkyl Chemicals in the US Population: 1999-2008. Environmental science & technology, 45(19), 8037-8045. https://doi.org/10.1021/es1043613 Kaur, G., & Dufour, J. M. (2012). Cell lines: Valuable tools or useless artifacts. In (Vol. 2, pp. 1-5): Taylor & Francis. Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B., & Wahli, W. (1999). Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. The Journal of clinical investigation, 103(11), 1489-1498. Kochanek, S. J., Close, D. A., & Johnston, P. A. (2019). High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Assay Drug Dev Technol, 17(1), 17-36. https://doi.org/10.1089/adt.2018.896 López-Terrada, D., Cheung, S. W., Finegold, M. J., & Knowles, B. B. (2009). Hep G2 is a hepatoblastoma-derived cell line. Human pathology, 40(10), 1512. Lee, Y. C., Lo, S. L., Kuo, J., & Huang, C. P. (2013). Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. Journal of Hazardous Materials, 261, 463-469. https://doi.org/10.1016/j.jhazmat.2013.07.054 Li, Z., Yan, Y., Powers, E. A., Ying, X., Janjua, K., Garyantes, T., & Baron, B. (2003). Identification of gap junction blockers using automated fluorescence microscopy imaging. J Biomol Screen, 8(5), 489-499. https://doi.org/10.1177/1087057103257309 Marques, E., Pfohl, M., Wei, W., Tarantola, G., Ford, L., Amaeze, O., Alesio, J., Ryu, S., Jia, X., Zhu, H., Bothun, G. D., & Slitt, A. (2022). Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol, 442, 115991. https://doi.org/10.1016/j.taap.2022.115991 National Toxicology, P. (2019). Toxicity studies of perfluoroalkyl carboxylates administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). Toxic Rep Ser(97). https://doi.org/10.22427/NTP-TOX-97 Nikolic, M., Sustersic, T., & Filipovic, N. (2018). In vitro Models and On-Chip Systems: Biomaterial Interaction Studies With Tissues Generated Using Lung Epithelial and Liver Metabolic Cell Lines. Front Bioeng Biotechnol, 6, 120. https://doi.org/10.3389/fbioe.2018.00120 Olsen, G. W., Burlew, M. M., Marshall, J. C., Burris, J. M., & Mandel, J. H. (2004). Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility. J Occup Environ Med, 46(8), 837-846. https://doi.org/10.1097/01.jom.0000135546.70469.87 Olufsen, M., Cangialosi, M. V., & Arukwe, A. (2014). Modulation of membrane lipid composition and homeostasis in salmon hepatocytes exposed to hypoxia and perfluorooctane sulfonamide, given singly or in combination. PloS one, 9(7), e102485. https://doi.org/10.1371/journal.pone.0102485 Otero-Sabio, C., Giacomello, M., Centelleghe, C., Caicci, F., Bonato, M., Venerando, A., Graic, J. M., Mazzariol, S., Finos, L., Corain, L., & Peruffo, A. (2022). Cell cycle alterations due to perfluoroalkyl substances PFOS, PFOA, PFBS, PFBA and the new PFAS C6O4 on bottlenose dolphin (Tursiops truncatus) skin cell. Ecotoxicol Environ Saf, 244, 113980. https://doi.org/10.1016/j.ecoenv.2022.113980 Peeters, A., & Baes, M. (2010). Role of PPARα in hepatic carbohydrate metabolism. PPAR research, 2010. Post, G. B., Gleason, J. A., & Cooper, K. R. (2017). Key scientific issues in developing drinking water guidelines for perfluoroalkyl acids: Contaminants of emerging concern. PLoS Biol, 15(12), e2002855. https://doi.org/10.1371/journal.pbio.2002855 Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol, 40(1), 32-44. https://doi.org/10.1021/es0512475 Qi, Q., Niture, S., Gadi, S., Arthur, E., Moore, J., Levine, K. E., & Kumar, D. (2023). Per- and polyfluoroalkyl substances activate UPR pathway, induce steatosis and fibrosis in liver cells. Environ Toxicol, 38(1), 225-242. https://doi.org/10.1002/tox.23680 Qi, W., Clark, J. M., Timme-Laragy, A. R., & Park, Y. (2020). Perfluorobutanesulfonic Acid (PFBS) Induces Fat Accumulation in HepG2 Human Hepatoma. Toxicol Environ Chem, 102(10), 585-606. https://doi.org/10.1080/02772248.2020.1808894 Ramirez, T., Strigun, A., Verlohner, A., Huener, H. A., Peter, E., Herold, M., Bordag, N., Mellert, W., Walk, T., Spitzer, M., Jiang, X., Sperber, S., Hofmann, T., Hartung, T., Kamp, H., & van Ravenzwaay, B. (2018). Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch Toxicol, 92(2), 893-906. https://doi.org/10.1007/s00204-017-2079-6 Ranea-Robles, P., Violante, S., Argmann, C., Dodatko, T., Bhattacharya, D., Chen, H., Yu, C., Friedman, S. L., Puchowicz, M., & Houten, S. M. (2021). Murine deficiency of peroxisomal L-bifunctional protein (EHHADH) causes medium-chain 3-hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis. Cellular and Molecular Life Sciences, 78(14), 5631-5646. Reagen, W., Lindstrom, K., Jacoby, C., Purcell, R., Kestner, T., Payfer, R., & Miller, J. (2007). Environmental characterization of 3M electrochemical fluorination derived perfluorooctanoate and perfluorooctanesulfonate. Society of Environmental Toxicology and Chemistry North America 28th Annual Meeting, Renner, R. (2006). The long and the short of perfluorinated replacements. In: ACS Publications. Ritter, S. K. (2010). Fluorochemicals Go Short. Chemical & Engineering News, 88(5), 12-17. <Go to ISI>://WOS:000274220800018 Rosen, M. B., Das, K. P., Rooney, J., Abbott, B., Lau, C., & Corton, J. C. (2017). PPARalpha-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling. Toxicology, 387, 95-107. https://doi.org/10.1016/j.tox.2017.05.013 Rosenmai, A. K., Ahrens, L., le Godec, T., Lundqvist, J., & Oskarsson, A. (2018). Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells. Journal of Applied Toxicology, 38(2), 219-226. https://doi.org/10.1002/jat.3515 Saikat, S., Kreis, I., Davies, B., Bridgman, S., & Kamanyire, R. (2013). The impact of PFOS on health in the general population: a review. Environ Sci Process Impacts, 15(2), 329-335. https://doi.org/10.1039/c2em30698k Schlezinger, J., Puckett, H., Oliver, J., Nielsen, G., Heiger-Bernays, W., & Webster, T. (2020). Perfluorooctanoic acid activates multiple nuclear receptor pathways and skews expression of genes regulating cholesterol homeostasis in liver of humanized PPARα mice fed an American diet. Toxicology and applied pharmacology, 405, 115204. Semerad, J., Hatasova, N., Grasserova, A., Cerna, T., Filipova, A., Hanc, A., Innemanova, P., Pivokonsky, M., & Cajthaml, T. (2020). Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere, 261, 128018. https://doi.org/10.1016/j.chemosphere.2020.128018 Sen, P., Qadri, S., Luukkonen, P. K., Ragnarsdottir, O., McGlinchey, A., Jantti, S., Juuti, A., Arola, J., Schlezinger, J. J., Webster, T. F., Oresic, M., Yki-Jarvinen, H., & Hyotylainen, T. (2022). Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease. Journal of Hepatology, 76(2), 283-293. https://doi.org/10.1016/j.jhep.2021.09.039 Serex, T., Anand, S., Munley, S., Donner, E. M., Frame, S. R., Buck, R. C., & Loveless, S. E. (2014). Toxicological evaluation of 6: 2 fluorotelomer alcohol. Toxicology, 319, 1-9. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 50(W1), W216-W221. https://doi.org/10.1093/nar/gkac194 Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect, 118(8), 1100-1108. https://doi.org/10.1289/ehp.0901827 Steenland, K., & Winquist, A. (2021). PFAS and cancer, a scoping review of the epidemiologic evidence. Environ Res, 194, 110690. https://doi.org/10.1016/j.envres.2020.110690 Steinbrecht, S., Konig, R., Schmidtke, K. U., Herzog, N., Scheibner, K., Kruger-Genge, A., Jung, F., Kammerer, S., & Kupper, J. H. (2019). Metabolic activity testing can underestimate acute drug cytotoxicity as revealed by HepG2 cell clones overexpressing cytochrome P450 2C19 and 3A4. Toxicology, 412, 37-47. https://doi.org/10.1016/j.tox.2018.11.008 Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol, 29(2), 131-147. https://doi.org/10.1038/s41370-018-0094-1 Taylor, P., & Yamada, T. (2003). Laboratory scale thermal degradation of perfluoro‐octanyl sulfonate and related precursors. Final Report. University of Dayton Research Institute, Dayton, OH, USA. Use, F. (1999). Distribution and release overview. St. Paul, MN. US Public Docket EPA-HQ-OPPT-2002-0051-0003. Wagbo, A. M., Cangialosi, M. V., Cicero, N., Letcher, R. J., & Arukwe, A. (2012). Perfluorooctane sulfonamide-mediated modulation of hepatocellular lipid homeostasis and oxidative stress responses in Atlantic salmon hepatocytes. Chem Res Toxicol, 25(6), 1253-1264. https://doi.org/10.1021/tx300110u Wan, H. T., Zhao, Y. G., Wei, X., Hui, K. Y., Giesy, J. P., & Wong, C. K. (2012). PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport. Biochim Biophys Acta, 1820(7), 1092-1101. https://doi.org/10.1016/j.bbagen.2012.03.010 Wang, L., Cao, D., Wei, C., Meng, X. J., Jiang, X., & Tan, M. (2014). A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine, 32(4), 445-452. https://doi.org/10.1016/j.vaccine.2013.11.064 Wang, N., Szostek, B., Buck, R. C., Folsom, P. W., Sulecki, L. M., & Gannon, J. T. (2009). 8-2 fluorotelomer alcohol aerobic soil biodegradation: pathways, metabolites, and metabolite yields. Chemosphere, 75(8), 1089-1096. https://doi.org/10.1016/j.chemosphere.2009.01.033 Wang, Z., Buser, A. M., Cousins, I. T., Demattio, S., Drost, W., Johansson, O., Ohno, K., Patlewicz, G., Richard, A. M., Walker, G. W., White, G. S., & Leinala, E. (2021). A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ Sci Technol, 55(23), 15575-15578. https://doi.org/10.1021/acs.est.1c06896 Wen, Y., Mirji, N., & Irudayaraj, J. (2020). Epigenetic toxicity of PFOA and GenX in HepG2 cells and their role in lipid metabolism. Toxicol In Vitro, 65, 104797. https://doi.org/10.1016/j.tiv.2020.104797 Wolf, C. J., Schmid, J. E., Lau, C., & Abbott, B. D. (2012). Activation of mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) by perfluoroalkyl acids (PFAAs): Further investigation of C4–C12 compounds. Reproductive Toxicology, 33(4), 546-551. Xu, J., Shimpi, P., Armstrong, L., Salter, D., & Slitt, A. L. (2016). PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway. Toxicol Appl Pharmacol, 290, 21-30. https://doi.org/10.1016/j.taap.2015.11.002 Yang, G., Sun, S., He, J., Wang, Y., Ren, T., He, H., & Gao, J. (2023). Enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase is essential for the production of DHA in zebrafish. Journal of Lipid Research, 64(3). Zhang, H., He, J., Li, N., Gao, N., Du, Q., Chen, B., Chen, F., Shan, X., Ding, Y., Zhu, W., Wu, Y., Tang, J., & Jia, X. (2019). Lipid accumulation responses in the liver of Rana nigromaculata induced by perfluorooctanoic acid (PFOA). Ecotoxicol Environ Saf, 167, 29-35. https://doi.org/10.1016/j.ecoenv.2018.09.120 Zhang, L., Ge, L., Parimoo, S., Stenn, K., & Prouty, S. M. (1999). Human stearoyl-Codesaturase: alternative transcripts generated from a single gene by usage of tandem A polyadenylation sites. Biochemical Journal, 340(1), 255-264. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89834 | - |
| dc.description.abstract | 全氟烷基化合物 (PFAS)結構具有疏水疏油性,其被廣泛用於廚具、食品包裝、化妝品和家具的保護塗層等日常消費品中。美國環境保護署 (US EPA) CompTox Chemicals Dashboard中存在超過 14,000 種和 PFAS 有關的結構。而這些無所不在、大量的PFAS,長期暴露下可能引起相關人類健康危害。哺乳動物暴露PFAS 後常見的表現型如脂肪肝形成與血清甘油三酯數值降低。然而,大多數 PFAS 的體內毒性和肝臟脂肪堆積潛力在很大程度上仍然未知。故本研究旨在利用 HepG2 細胞研究 PFAS 誘導的肝臟脂質堆積與毒性效應,並利用現有的體內毒性數據描述體外效應。我們從具有代表性的 PFAS 家族中選擇了 20 個 PFAS 物種,包括全氟烷基羧酸鹽(perfluoroalkyl carboxylates, PFCAs)、全氟烷基磺酸鹽(perfluoroalkyl sulfonates, PFSAs)、氟調聚物磺酸鹽(fluorotelomer sulfonates, FTSs)、氟調聚物醇類(fluorotelomer alcohols, FTOH)、短鏈新興 PFAS (GenX)、全氟烷基磺醯胺(perfluoroalkyl sulfonamide , PFOSA)、氟調聚物不飽和羧酸(fluorotelomer unsaturated carboxylic acid, PFUcA)及全氟烷基磺醯胺醇(perfluoroalkyl sulfonamidoethanol)。將 HepG2 細胞接種到 96 孔盤中,於 37 ℃ 和 5% CO2下培養 24 小時後,以各測試化合物濃度為0.01、0.1、1、10 及 100 μM 的處理 48 小時。以螢光染劑對細胞進行染色(細胞核、線粒體和中性脂質)後使用 ImageXpress Micro Confocal 收集高內涵成像 (HCI) 表現型,其中劑量反應相關數據以Hill 模型推導出生物起始劑量(POD)。在所有測試的化合物中,以PFOSA 表現出最強的反應,而 FTOHs、FTS、PFUcA 和短鏈新興 PFAS 化合物表現出較小的反應。總結來說,具有磺酸、胺基相關的官能基團與較長的碳氟鏈的 PFAS 化合物在 HepG2 細胞中較容易產生反應。而本研究中獲得的體外 POD 濃度與大鼠 28 天研究中獲得的血中三酸甘油脂含量的體內 POD 值高度相關(r=0.97;ρ=0.76)(NTP TOX-96 及 TOX- 97)。在反轉錄聚合酶連鎖反應中也可以驗證PFAS存在可能之脂肪堆積的效應。總而言之,我們證明了 HepG2 細胞產生的體外 PODs 可以對應到 PFAS 化合物的體內肝脂肪變性的趨勢,這將有助於未來 PFAS 混合物的健康危害評估。本研究也證明了先前文獻的結果,具有8至12個碳的 PFAS 具有較高相關之生物活性。並相信未來隨著收集更多相關數據,此工具可用於填補 PFAS 和未來混合物 PFAS 研究中的數據空白。 | zh_TW |
| dc.description.abstract | Perfluoroalkyl substances (PFAS) manifest water and lipid-resistant properties, which are widely used in consumer products such as protective coatings for cookware, food packaging, cosmetics, and furniture. More than 14,000 structurally-diverse PFAS structures exist in the U.S. Environmental Protection Agency (US EPA) CompTox Chemicals Dashboard. The ubiquitous exposure to numerous PFAS compounds has raised health concerns in humans. Hepatosteatosis and reduced serum triglyceride levels are the common phenotypes induced by PFAS exposures in mammals. However, the in vivo toxicity and hepatosteatosis potential of most PFAS remain largely unknown. This study aims to investigate the PFAS-induced hepatocellular effects using HepG2 cells and delineate the in vitro effects with existing in vivo toxicity data. We selected 20 PFAS species from the representative PFAS families, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), fluorotelomer alcohols (FTOH), short-chain emerging PFAS (GenX), perfluoroalkyl sulfonamide (PFOSA), Fluorotelomer unsaturated carboxylic acid (PFUcA), and perfluoroalkyl sulfonamidoethanol. The HepG2 cells were seeded into a 96-well plate, incubated at 37 ℃ and 5% CO2 for 24 hours, and then treated with test compounds at 0.01, 0.1, 1, 10, or 100 μM for 48 hours. Next, the cells were stained with fluorescent dyes, targeting at cell nucleus, mitochondria, and neutral lipids species.The high-content imaging (HCI) phenotypes were collected using ImageXpress Micro Confocal, where the concentration-response data was fitted with the Hill model to derive the point of departure (POD) concentrations. Among the test substances, PFOSA showed the strongest, while FTOHs, FTS, PFUcA, and short-chain emerging PFAS compounds manifested the least hepatosteatosis potential. Overall, PFAS compounds with functional groups sulfonic acid, amine, or saturated carboxylic acid developed in vitro hepatosteatosis effects in HepG2 cells. The in vitro POD concentrations acquired in this study are highly correlated (r=0.97; ρ= 0.76) with the in vivo POD values of serum triglyceride levels obtained from the 28-day gavage studies in rats (NTP reports TOX-96 and TOX-97). In conclusion, we demonstrated that in vitro PODs generated from HepG2 cells could project in vivo hepatosteatosis potentials of PFAS substances, which would facilitate the mixture health assessment of PFAS substances.It proves the results from previous studies that PFAS with 8-12 carbons have more obvious biological activity. As collecting more data, this tool can be used to fill the data gap in PFAS and in future mixture PFAS study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:19:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:19:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 X 一、緒論 1 1.1 全多氟烷基化合物 (Per- and polyfluoroalkyl substances, PFAS) 1 1.2 PFAS的健康效應 3 1.2.1 生殖危害 3 1.2.2 內分泌干擾 4 1.2.3 致癌性 4 1.2.4 肝臟脂肪堆積與調節異常 4 1.3 脂肪堆積與脂肪肝病 5 1.4 高內涵影像分析 6 1.5 HepG2細胞 7 1.6 研究目的 8 二、材料與方法 9 2.1 實驗材料 9 2.2 實驗步驟與流程架構圖 10 2.2.1 細胞培養與繼代 10 2.2.2 準備細胞盤 10 2.2.3 調配試藥 11 2.2.4 細胞毒性試驗-二甲基硫醇二苯基四唑溴(MTT)試驗 11 2.2.5 脂質累積與粒線體損傷試驗 12 2.2.6 高通量影像攝影 12 2.2.7 體內資料與體外資料之比較 13 2.2.8 代謝途徑分析 14 2.2.9 定量即時反轉錄聚合酶連鎖反應(Quantitative Reverse Transcriptase Polymerase chain reaction, qRT-PCR) 15 2.2.10 統計方法 16 三、結果與討論 17 3.1 HCI數據之表現型定義 17 3.2 細胞毒性試驗 17 3.3 脂肪累積試驗 17 3.4 粒線體損傷試驗 19 3.5 二十種全氟碳化物之生物活性相關比較 20 3.6 體內資料與體外資料之比較 20 3.7 代謝途徑分析 21 3.8 qRT-PCR 22 四、結論 25 參考文獻 26 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Hep G2 細胞 | zh_TW |
| dc.subject | 生物起始劑量 | zh_TW |
| dc.subject | 全氟烷基化合物 | zh_TW |
| dc.subject | 高內含影像分析 | zh_TW |
| dc.subject | High content imaging (HCI) | en |
| dc.subject | PFAS | en |
| dc.subject | point of departure (POD) | en |
| dc.subject | Hep G2 | en |
| dc.title | 以體外高內涵影像技術探討全多氟烷基化合物 (PFAS) 對於人體之肝臟脂質堆積與毒性效應 | zh_TW |
| dc.title | Decipher the Hepatosteatosis and Hepatotoxicity of Perfluoroalkyl Substances (PFAS) in Humans Using in Vitro High-Content Imaging Technique | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏嘉徵;林靖愉;劉興華 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Cheng Wei;Ching-Yu Lin;Shing-Hwa Liu | en |
| dc.subject.keyword | 全氟烷基化合物,高內含影像分析,生物起始劑量,Hep G2 細胞, | zh_TW |
| dc.subject.keyword | PFAS,High content imaging (HCI),point of departure (POD),Hep G2, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202302800 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 食品安全與健康研究所 | - |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
