請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89831
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王錦堂 | zh_TW |
dc.contributor.advisor | Jin-Town Wang | en |
dc.contributor.author | 詹佳育 | zh_TW |
dc.contributor.author | Chia-Yu Chan | en |
dc.date.accessioned | 2023-09-22T16:18:28Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Carpenter, J.L., Klebsiella pulmonary infections: occurrence at one medical center and review. Rev Infect Dis, 1990. 12(4): p. 672-82.
Podschun, R., et al., Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1998. 11(4): p. 589-603. Ejikeme, C., et al., Hepatosplenic Abscess From Klebsiella pneumoniae in Poorly Controlled Diabetic. J Investig Med High Impact Case Rep, 2021. 9: p. 23247096211033046. Khaertynov, K.S., et al., Virulence Factors and Antibiotic Resistance of Klebsiella pneumoniae Strains Isolated From Neonates With Sepsis. Front Med (Lausanne), 2018. 5: p. 225. Mike, L.A., et al., A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog, 2021. 17(3): p. e1009376. Choi, M., et al., The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. Front Microbiol, 2020. 11: p. 1249. Pan, Y.J., et al., Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS One, 2013. 8(12): p. e80670. Fang, C.T., et al., Rapid and Accurate Determination of Lipopolysaccharide O-Antigen Types in Klebsiella pneumoniae with a Novel PCR-Based O-Genotyping Method. J Clin Microbiol, 2016. 54(3): p. 666-75. Bush, K., et al., β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb Perspect Med, 2016. 6(8). Livermore, D.M., Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev, 1995. 8(4): p. 557-84. Rawat, D., et al., Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis, 2010. 2(3): p. 263-74. Somboro, A.M., et al., Diversity and Proliferation of Metallo-β-Lactamases: a Clarion Call for Clinically Effective Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol, 2018. 84(18). Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51, table of contents. Paterson, D.L., et al., Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev, 2005. 18(4): p. 657-86. Nordmann, P., et al., Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis, 2011. 17(10): p. 1791-8. Tzouvelekis, L.S., et al., Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012. 25(4): p. 682-707. Papp-Wallace, K.M., et al., Carbapenems: past, present, and future. Antimicrob Agents Chemother, 2011. 55(11): p. 4943-60. Nordmann, P., et al., Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis, 2019. 69(Suppl 7): p. S521-s528. Pfeifer, Y., et al., Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol, 2010. 300(6): p. 371-9. Chiu, S.K., et al., Carbapenem Nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and Increasing Resistance of Carbapenemase Producers During 2012-2015. Sci Rep, 2018. 8(1): p. 8468. Castanheira, M., et al., Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist, 2021. 3(3): p. dlab092. Ruiz, J., Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin Microbiol Rev, 2019. 32(4). Wyres, K.L., et al., Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol, 2018. 45: p. 131-9. Chaves, J., et al., SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2001. 45(10): p. 2856-61. Fu, Y., et al., Differential expression of bla(SHV) related to susceptibility to ampicillin in Klebsiella pneumoniae. Int J Antimicrob Agents, 2007. 29(3): p. 344-7. Thai, Q.K., et al., SHV Lactamase Engineering Database: a reconciliation tool for SHV β-lactamases in public databases. BMC Genomics, 2010. 11: p. 563. Castanheira, M., et al., Antimicrobial susceptibility patterns of KPC-producing or CTX-M-producing Enterobacteriaceae. Microb Drug Resist, 2010. 16(1): p. 61-5. Mathers, A.J., et al., The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev, 2015. 28(3): p. 565-91. Yong, D., et al., Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother, 2009. 53(12): p. 5046-54. Mairi, A., et al., OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis, 2018. 37(4): p. 587-604. Gupta, N., et al., Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis, 2011. 53(1): p. 60-7. Yahav, D., et al., Colistin: new lessons on an old antibiotic. Clin Microbiol Infect, 2012. 18(1): p. 18-29. Cunha, B.A., Aminopenicillins in urology. Urology, 1992. 40(2): p. 186-90. Acred, P., et al., Pharmacology and chemotherapy of ampicillin--a new broad-spectrum penicillin. Br J Pharmacol Chemother, 1962. 18(2): p. 356-69. Akova, M., Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect, 2008. 14 Suppl 1: p. 185-8. Suleyman, G., et al., Safety and efficacy of commonly used antimicrobial agents in the treatment of enterococcal infections: a review. Expert Opin Drug Saf, 2016. 15(2): p. 153-67. Tooke, C.L., et al., β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol, 2019. 431(18): p. 3472-3500. Noguchi, J.K., et al., Sulbactam: a beta-lactamase inhibitor. Clin Pharm, 1988. 7(1): p. 37-51. Shapiro, A.B., Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam. Antimicrob Agents Chemother, 2017. 61(12). Hedstrom, L., IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev, 2009. 109(7): p. 2903-28. Chong, C.R., et al., Identification of type 1 inosine monophosphate dehydrogenase as an antiangiogenic drug target. J Med Chem, 2006. 49(9): p. 2677-80. Glander, P., et al., Inosine 5'-monophosphate dehydrogenase activity as a biomarker in the field of transplantation. Clin Chim Acta, 2012. 413(17-18): p. 1391-7. Striepen, B., et al., Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc Natl Acad Sci U S A, 2004. 101(9): p. 3154-9. Striepen, B., et al., Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci U S A, 2002. 99(9): p. 6304-9. Umejiego, N.N., et al., Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem Biol, 2008. 15(1): p. 70-7. Gorla, S.K., et al., Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother, 2014. 58(3): p. 1603-14. Hedstrom, L., et al., The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem, 2011. 18(13): p. 1909-18. Gollapalli, D.R., et al., Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. Chem Biol, 2010. 17(10): p. 1084-91. Hafza, N., et al., Competition assays between ESBL-producing E. coli and K. pneumoniae isolates collected from Lebanese elderly: An additional cost on fitness. J Infect Public Health, 2018. 11(3): p. 393-397. Morrow, C.A., et al., De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog, 2012. 8(10): p. e1002957. Wu, K.M., et al., Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol, 2009. 191(14): p. 4492-501. Garber, E.D., et al., The Virulence of Biochemical Mutants of Klebsiella Pneumoniae. Proc Natl Acad Sci U S A, 1952. 38(8): p. 693-7. Papp-Wallace, K.M., et al., Inhibitor resistance in the KPC-2 beta-lactamase, a preeminent property of this class A beta-lactamase. Antimicrob Agents Chemother, 2010. 54(2): p. 890-7. Fang, C.T., et al., A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med, 2004. 199(5): p. 697-705. Hsieh, P.-F., et al., Serum-Induced Iron-Acquisition Systems and TonB Contribute to Virulence in Klebsiella pneumoniae Causing Primary Pyogenic Liver Abscess. J. Infect. Dis., 2008. 197(12): p. 1717-27. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89831 | - |
dc.description.abstract | 克雷伯氏肺炎桿菌(Klebsiella pneumoniae)是現今常見於院內感染及社區型感染的病原菌,其抗藥性發展日益嚴重,不只已經對廣譜的乙內醯胺(β-lactam)類抗生素產生大幅的抗藥性,連原本能有效治療具有廣效性乙內醯胺酶(Extended spectrum β-lactamases)之克雷伯氏肺炎桿菌感染的碳青黴烯類(Carbapenem)抗生素也失去功效。最早被發現克雷伯氏肺炎桿菌具有抗藥性的抗生素是隸屬於青黴素類 (Penicillin)的氨芐青黴素(Ampicillin),起因於克雷伯氏肺炎桿菌染色體上本來就有編碼盤尼西林酶(Penicillinase)的基因shv-1,因此能水解這類抗生素。本研究想了解在台大醫院收集到之臨床菌株NTUH-K2044對於氨芐青黴素具有抗藥性,其機制為何。因此透過先前實驗室已建立好帶有mini-Tn5跳躍基因的NTUH-K2044菌株跳躍子突變株庫(Transposon mutant library)來篩選目標突變株,篩到了兩株突變株在100 μg/mL的氨芐青黴素下生長情況相對不佳,進而定序比對結果。發現跳躍子插入guaB基因中,此基因的產物為肌苷單磷酸去氫酶(Inosine 5'-monophosphate dehydrogenase,IMPDH),在三磷酸鳥苷(Guanosine triphosphate,GTP)和鳥嘌呤(Guanine)的合成途徑上是重要的催化酵素,也會進而影響DNA和RNA合成以及細胞增生。因此,我們將此基因剔除,觀察其最小抑菌濃度(Minimum inhibitory concentration,MIC)變化。接著對剔除guaB基因後的菌株做了鳥嘌呤回補試驗,發現無論氨芐青黴素加入與否,都不影響突變株,因此推論guaB基因影響NTUH-K2044生長,並非參與對氨芐青黴素的抗藥機制。之後利用NTUH-K2044已知的全基因序列(Whole genome sequence)進行比對,找出其基因體上和乙內醯胺酶相關的基因shv11,建構缺失突變株後測試其氨芐青黴素的最小抑菌濃度,比起參考菌株下降了32倍,表示shv11確實參與了NTUH-K2044對氨芐青黴素的抗藥機制。此外,也針對一株造成院內感染的碳青黴烯類耐藥克雷伯氏肺炎桿菌菌株(carbapenem-resistant Klebsiella pneumoniae,CRKP)CB28進行乙內醯胺酶相關基因的剔除,分別是shv1、shv2、toho1、kpc基因,已成功獲取shv1、toho1、kpc等三株缺失突變株及kpc、toho1雙重基因缺失突變株,但進行抗生素感受試驗時,其最小抑菌濃度皆沒有下降,直到使用舒巴坦(Sulbactam)乙內醯胺酶抑制劑輔助氨芐青黴素活性時shv1、kpc基因缺失突變株及kpc、toho1雙重基因缺失突變株才有下降大於4到8倍的現象。 | zh_TW |
dc.description.abstract | Klebsiella pneumoniae is a common pathogen responsible for both hospital-acquired and community-acquired infections. The development of antimicrobial resistance in this bacterium has become a serious concern, as it has not only acquired extensive resistance to broad-spectrum β-lactam antibiotics but also rendered carbapenem, which were once effective against extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae infections. The initial discovery of antibiotic resistance in K. pneumoniae was associated with ampicillin, a member of the penicillin class, due to the presence of the gene shv1 encoding penicillinase on the bacterial chromosome, which could hydrolyze such antibiotics. This study aimed to understand the mechanisms of resistance to ampicillin in clinical strain NTUH-K2044 collected from National Taiwan University Hospital. To investigate this, a transposon mutant library of NTUH-K2044 containing mini-Tn5 transposons was employed for screening target mutants. Two mutants with compromised growth under 100 μg/mL of ampicillin were identified and subjected to sequencing analysis. The insertion of the transposon in the guaB gene was found, which encodes inosine 5'-monophosphate dehydrogenase (IMPDH), a critical catalytic enzyme involved in the synthesis of guanosine triphosphate (GTP) and guanine, affecting DNA and RNA synthesis as well as cell proliferation. However, the deletion of the guaB gene in NTUH-K2044 was performed, and the changes in the minimum inhibitory concentration (MIC) of ampicillin were observed. In the guanine supplementation test, the growth of the guaB mutant strains was not affected, regardless of the presence of ampicillin. Consequently, we hypothesize that the guaB gene affects the growth condition of NTUH-K2044 but does not participate in the resistance mechanism. Further analysis using the whole-genome sequence of NTUH-K2044 identified the presence of the β-lactamase-associated gene shv11. Constructing a shv11 deletion mutant and testing its MIC against ampicillin showed a 32-fold decrease compared to the reference strain, indicating the involvement of shv11 in ampicillin resistance in NTUH-K2044. Additionally, the study focused on a carbapenem-resistant Klebsiella pneumoniae (CRKP) strain, CB28, causing hospital-acquired infections. Deletion β-lactamase-associated genes, including shv1, shv2, toho1 and kpc were performed. Although three single gene deletion mutants (shv1, toho1 and kpc) and one double gene deletion mutant (kpc and toho1) were obtained, none of them showed reduced MIC against ampicillin. However, the combination of sulbactam, a β-lactamase inhibitor, and ampicillin led to a significant 4 to 8-fold decrease in MIC for shv1, kpc single gene deletion mutants and kpc. toho1 double gene deletion mutant. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:18:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:18:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v 目錄 vii 表目錄 x 圖目錄 xi 第一章、緒論 1 1.1 克雷伯氏肺炎桿菌簡介(Klebsiella pneumoniae) 1 1.2 乙內醯胺酶 1 1.3 具廣效性乙內醯胺酶之克雷伯氏肺炎桿菌 3 1.4 碳青黴烯類耐藥克雷伯氏肺炎桿菌出現 3 1.5 乙內醯胺酶分型命名 4 1.6 克雷伯氏肺炎桿菌的固有抗藥性 4 1.7 SHV型別乙內醯胺酶 5 1.8 克雷伯氏肺炎桿菌多重抗藥性及用藥演進 5 1.9 氨芐青黴素 6 1.10 舒巴坦 7 1.11 肌苷單磷酸去氫酶 8 1.12 細菌之肌苷單磷酸去氫酶藥物發展現狀 9 1.13 研究動機 10 第二章、實驗材料與方法 11 2.1 實驗材料 11 2.1.1 菌株及跳躍子突變株庫(Strains and transposon mutant library) 11 2.1.2 質體(Plasmids) 11 2.1.3 培養基(Media) 11 2.1.4 抗生素(Antibiotics) 11 2.1.5 化合物與試劑(Chemicals and reagents) 11 2.1.6 引子(Primers) 11 2.1.7 儀器 (Instrument) 11 2.2 實驗方法 12 2.2.1 抗生素感受性試驗 (Antibiotic susceptibility test) 12 2.2.2 跳躍子突變菌株之篩選 (Transposon mutant library) 13 2.2.3 菌落生成單位計數(Colony forming unit counting) 13 2.2.4 半隨機聚合酶鏈反應(Semi-random polymerase chain reaction,Semi- random PCR) 14 2.2.5 定序分析 (Sequence analysis) 15 2.2.6 聚合酶連鎖反應 (Polymerase chain reaction,PCR) 16 2.2.7 反向聚合酶連鎖反應 (Inverse polymerase chain reaction,Inverse PCR) 17 2.2.8 瓊脂糖凝膠電泳(Agarose gel electrophoresis) 17 2.2.9 細菌質體DNA之萃取 (Plasmid DNA extraction) 17 2.2.10 製作勝任細胞 (Competent cell) 18 2.2.11 電穿孔(Electroporation) 19 2.2.12 建構缺失突變株 (Construction of deletion mutant) 19 2.2.13 測量生長曲線 (Growth curve) 21 2.2.14 體外補充鳥嘌呤試驗(Supplement with guanine) 21 第三章、實驗結果 23 3.1 篩選具氨苄青黴素低抗性之NTUH-K2044跳躍子突變株 23 3.2 目標突變株之之跳躍子插入位置分析 23 3.3 建構guaB基因缺失突變株 23 3.4 突變株之菌落型態及生長曲線 24 3.5 體外補充鳥嘌呤培養及觀察生長曲線 24 3.6 建構shv11基因缺失突變株 25 3.7 觀察CB28的乙內醯胺酶基因對其氨苄青黴素抗藥性的影響 25 3.8 觀察舒巴坦抑制乙內醯胺酶之效果 26 第四章、討論及未來展望 28 參考文獻 30 表 38 圖 56 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討造成社區性感染及院內感染之克雷伯氏肺炎桿菌對氨芐青黴素抗藥性之機制 | zh_TW |
dc.title | Ampicillin resistant mechanism(s)in community acquired and nosocomial infection Klebsiella pneumoniae strains | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 賴信志;董馨蓮;林妙霞 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Chih Lai;Sin-Lian Doong;Miao-Hsia Lin | en |
dc.subject.keyword | 克雷伯氏肺炎桿菌,抗藥性,氨芐青黴素,guaB,IMPDH,shv11, | zh_TW |
dc.subject.keyword | Klebsiella pneumoniae,Intrinsic resistance,Ampicillin,guanine,guaB,shv11, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202303562 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 微生物學研究所 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 3.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。