請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89830完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳焜裕 | zh_TW |
| dc.contributor.advisor | Kuen-Yuh Wu | en |
| dc.contributor.author | 朱宏洋 | zh_TW |
| dc.contributor.author | HUNG-YANG CHU | en |
| dc.date.accessioned | 2023-09-22T16:18:13Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Adamse, P., Schoss, S., Theelen, R. M., & Hoogenboom, R. L. (2017). Levels of dioxins and dioxin-like PCBs in food of animal origin in the Netherlands during the period 2001-2011. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 34(1), 78-92. https://doi.org/10.1080/19440049.2016.1252065
Ahlborg, U. G., Becking, G. C., Birnbaum, L. S., Brouwer, A., Derks, H., Feeley, M., Golor, G., Hanberg, A., Larsen, J. C., Liem, A. K. D., Safe, S. H., Schlatter, C., Waern, F., Younes, M., & Yrjänheikki, E. (1994). Toxic equivalency factors for dioxin-like PCBs: Report on WHO-ECEH and IPCS consultation, December 1993. Chemosphere, 28(6), 1049-1067. https://doi.org/https://doi.org/10.1016/0045-6535(94)90324-7 Alcock, R. E., Sweetman, A. J., & Jones, K. C. (2001). A congener-specific PCDD/F emissions inventory for the UK: do current estimates account for the measured atmospheric burden? Chemosphere, 43(2), 183-194. https://doi.org/https://doi.org/10.1016/S0045-6535(00)00173-9 Aylward, L. L., Brunet, R. C., Carrier, G., Hays, S. M., Cushing, C. A., Needham, L. L., Patterson, D. G., Gerthoux, P. M., Brambilla, P., & Mocarelli, P. (2005). Concentration-dependent TCDD elimination kinetics in humans: toxicokinetic modeling for moderately to highly exposed adults from Seveso, Italy, and Vienna, Austria, and impact on dose estimates for the NIOSH cohort. Journal of Exposure Science & Environmental Epidemiology, 15(1), 51-65. https://doi.org/10.1038/sj.jea.7500370 Baccarelli, A., Giacomini, S. M., Corbetta, C., Landi, M. T., Bonzini, M., Consonni, D., Grillo, P., Patterson, D. G., Jr., Pesatori, A. C., & Bertazzi, P. A. (2008). Neonatal Thyroid Function in Seveso 25 Years after Maternal Exposure to Dioxin. PLOS Medicine, 5(7), e161. https://doi.org/10.1371/journal.pmed.0050161 Barone, G., Storelli, A., Busco, A., Mallamaci, R., & Storelli, M. M. (2021). Polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in food from Italy: Estimates of dietaryintake and assessment. J Food Sci, 86(10), 4741-4753. https://doi.org/10.1111/1750-3841.15901 Bhavsar, S. P., Reiner, E. J., Hayton, A., Fletcher, R., & MacPherson, K. (2008). Converting Toxic Equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one Toxic Equivalency Factor (TEF) scheme to another. Environ Int, 34(7), 915-921. https://doi.org/10.1016/j.envint.2008.02.001 Birnbaum, L. S. (1994). The mechanism of dioxin toxicity: relationship to risk assessment. Environ Health Perspect, 102 Suppl 9(Suppl 9), 157-167. https://doi.org/10.1289/ehp.94102s9157 Booth, S., Hui, J., Alojado, Z., Lam, V., Cheung, W., Zeller, D., Steyn, D., & Pauly, D. (2013). Global deposition of airborne dioxin. Marine Pollution Bulletin, 75(1), 182-186. https://doi.org/https://doi.org/10.1016/j.marpolbul.2013.07.041 Bramwell, L., Mortimer, D., Rose, M., Fernandes, A., Harrad, S., & Pless-Mulloli, T. (2017). UK dietary exposure to PCDD/Fs, PCBs, PBDD/Fs, PBBs and PBDEs: comparison of results from 24-h duplicate diets and total diet studies. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 34(1), 65-77. https://doi.org/10.1080/19440049.2016.1258493 Breivik, K., Alcock, R., Li, Y.-F., Bailey, R. E., Fiedler, H., & Pacyna, J. M. (2004). Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution, 128(1), 3-16. https://doi.org/https://doi.org/10.1016/j.envpol.2003.08.031 Bumb, R. R., Crummett, W. B., Cutie, S. S., Gledhill, J. R., Hummel, R. H., Kagel, R. O., Lamparski, L. L., Luoma, E. V., Miller, D. L., Nestrick, T. J., Shadoff, L. A., Stehl, R. H., & Woods, J. S. (1980). Trace chemistries of fire: A source of chlorinated dioxins [Review]. Science, 210(4468), 385-390. https://doi.org/10.1126/science.6159682 Casals-Casas, C., & Desvergne, B. (2011). Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annual Review of Physiology, 73(1), 135-162. https://doi.org/10.1146/annurev-physiol-012110-142200 Chang, J. W., Liao, P. C., & Lee, C. C. (2012). Dietary Intake of PCDD/Fs and Dioxin-Like PCBs from Fresh Foods around Taiwan [Article]. Journal of Food and Drug Analysis, 20(4), 805-813. https://doi.org/10.6227/jfda.2012200409 Chen, C.-M. (2004). The emission inventory of PCDD/PCDF in Taiwan. Chemosphere, 54(10), 1413-1420. https://doi.org/https://doi.org/10.1016/j.chemosphere.2003.10.039 Chopra, M., & Schrenk, D. (2011). Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis—Persistent pollutants affect programmed cell death. Critical Reviews in Toxicology, 41(4), 292-320. https://doi.org/10.3109/10408444.2010.524635 Dalton, T. P., Kerzee, J. K., Wang, B., Miller, M., Dieter, M. Z., Lorenz, J. N., Shertzer, H. G., Nerbert, D. W., & Puga, A. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc Toxicol, 1(4), 285-298. https://doi.org/10.1385/ct:1:4:285 Diletti, G., Scortichini, G., Abete, M. C., Binato, G., Candeloro, L., Ceci, R., Chessa, G., Conte, A., Di Sandro, A., Esposito, M., Fedrizzi, G., Ferrantelli, V., Ferretti, E., Menotta, S., Nardelli, V., Neri, B., Piersanti, A., Roberti, F., Ubaldi, A., & Brambilla, G. (2018). Intake estimates of dioxins and dioxin-like polychlorobiphenyls in the Italian general population from the 2013-2016 results of official monitoring plans in food. Sci Total Environ, 627, 11-19. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.01.181 Djien Liem, A. K., Furst, P., & Rappe, C. (2000). Exposure of populations to dioxins and related compounds. Food Additives & Contaminants, 17(4), 241-259. https://doi.org/10.1080/026520300283324 Dopico, M., & Gómez, A. (2015). Review of the current state and main sources of dioxins around the world. Journal of the Air & Waste Management Association, 65(9), 1033-1049. https://doi.org/10.1080/10962247.2015.1058869 Dorne, J. L. C. M. (2010). Metabolism, variability and risk assessment. Toxicology, 268(3), 156-164. https://doi.org/https://doi.org/10.1016/j.tox.2009.11.004 Dyke, P. H., & Stratford, J. (2002). Changes to the TEF schemes can have significant impacts on regulation and management of PCDD/F and PCB. Chemosphere, 47(2), 103-116. https://doi.org/10.1016/s0045-6535(01)00219-3 EFSA. (2010). Results of the monitoring of dioxin levels in food and feed. EFSA Journal, 8(3), 1385. https://doi.org/https://doi.org/10.2903/j.efsa.2010.1385 EFSA. (2012). Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA Journal, 10(7), 2832. https://doi.org/https://doi.org/10.2903/j.efsa.2012.2832 EFSA. (2014). Guidance on the EU Menu methodology. EFSA. (2022). The EFSA Comprehensive European Food Consumption Database. Emond, C., Michalek, J. E., Birnbaum, L. S., & DeVito, M. J. (2005). Comparison of the Use of a Physiologically Based Pharmacokinetic Model and a Classical Pharmacokinetic Model for Dioxin Exposure Assessments. Environmental Health Perspectives, 113(12), 1666-1668. https://doi.org/doi:10.1289/ehp.8016 EPA, E. P. A. (2010, 2010). Recommended Toxicity Equivalency Factors for Human Health Risk Assessments of Dioxin and Dioxin-Like Compounds. Retrieved 9 April from https://www.epa.gov/risk/documents-recommended-toxicity-equivalency-factors-human-health-risk-assessments-dioxin-and EPA., U. S. (2004). Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (Tcdd) and Related Compounds National Academy Sciences (External Review Draft). Esposito, M., Cavallo, S., Serpe, F. P., D’Ambrosio, R., Gallo, P., Colarusso, G., Pellicanò, R., Baldi, L., Guarino, A., & Serpe, L. (2009). Levels and congener profiles of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls in cow’s milk collected in Campania, Italy. Chemosphere, 77(9), 1212-1216. https://doi.org/https://doi.org/10.1016/j.chemosphere.2009.09.011 European Commission. (2001). Community Strategy for Dioxins, Furans and Polychlorinated Biphenyls. European Commission. (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. European Commission, D.-G. f. H. a. F. S. (2022). Commission Regulation (EU) 2022/2002 of 21 October 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of dioxins and dioxin-like PCBs in certain foodstuffs. European Commission, D.-G. f. H. a. F. S. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). European Food Safety, A. (2012). Update of the monitoring of levels of dioxins and PCBs in food and feed [https://doi.org/10.2903/j.efsa.2012.2832]. EFSA Journal, 10(7), 2832. https://doi.org/https://doi.org/10.2903/j.efsa.2012.2832 Felter, S. P., Bhat, V. S., Botham, P. A., Bussard, D. A., Casey, W., Hayes, A. W., Hilton, G. M., Magurany, K. A., Sauer, U. G., & Ohanian, E. V. (2021). Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Critical Reviews in Toxicology, 51(8), 653-694. https://doi.org/10.1080/10408444.2021.2003295 Felter, S. P., Boobis, A. R., Botham, P. A., Brousse, A., Greim, H., Hollnagel, H. M., & Sauer, U. G. (2020). Hazard identification, classification, and risk assessment of carcinogens: too much or too little? – Report of an ECETOC workshop. Critical Reviews in Toxicology, 50(1), 72-95. https://doi.org/10.1080/10408444.2020.1727843 Firestone, M., Fenner-Crisp, P., Barry, T., Bennett, D., Chang, S., Callahan, M., Burke, A., Michaud, J., Olsen, M., & Cirone, P. (1997). Guiding principles for Monte Carlo analysis. Washington, DC: US Environmental Protection Agency. Fletcher, C. L., & McKay, W. A. (1993). Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in the aquatic environment — A literature review. Chemosphere, 26(6), 1041-1069. https://doi.org/https://doi.org/10.1016/0045-6535(93)90194-A Food, S. C. o. (2000). Opinion of the SCF on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food. European Commission. Govers, H. A. J., & Krop, H. B. (1998). Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins. Chemosphere, 37(9), 2139-2152. https://doi.org/https://doi.org/10.1016/S0045-6535(98)00276-8 Graf, C., Katsoyiannis, A., Jones, K. C., & Sweetman, A. J. (2016). The TOMPs ambient air monitoring network – Continuous data on UK air quality for over 20 years. Environmental Pollution, 217, 42-51. https://doi.org/https://doi.org/10.1016/j.envpol.2016.01.033 Gray Jr, L. E., Ostby, J., Furr, J., Wolf, C. J., Lambright, C., Parks, L., Veeramachaneni, D. N., Wilson, V., Price, M., Hotchkiss, A., Orlando, E., & Guillette, L. (2001). Effects of environmental antiandrogens on reproductive development in experimental animals. APMIS, 109(S103), S302-S319. https://doi.org/https://doi.org/10.1111/j.1600-0463.2001.tb05780.x Haedrich, J., Stumpf, C., & Denison, M. S. (2021). Bioanalytical screening of low levels of dioxins and dioxin-like PCBs in pig meat (pork) for checking compliance with EU maximum and action levels using highly sensitive "third generation" recombinant H4L7.5c2 rat hepatoma cells. Environ Sci Eur, 33(1), 33. https://doi.org/10.1186/s12302-021-00474-2 Harrad, S. J., & Smith, D. J. T. (1997). Evaluation of a terrestrial food chain model for estimating foodstuff concentrations of PCDD/Fs. Chemosphere, 34(8), 1723-1737. https://doi.org/https://doi.org/10.1016/S0045-6535(97)00029-5 Harrison, R. L. (2010). Introduction to monte carlo simulation. AIP conference proceedings, Heres, L., Hoogenboom, R., Herbes, R., Traag, W., & Urlings, B. (2010). Tracing and analytical results of the dioxin contamination incident in 2008 originating from the Republic of Ireland. Food Additives & Contaminants: Part A, 27(12), 1733-1744. https://doi.org/10.1080/19440049.2010.522598 Hermsen, S. A., Larsson, S., Arima, A., Muneoka, A., Ihara, T., Sumida, H., Fukusato, T., Kubota, S., Yasuda, M., & Lind, P. M. (2008). In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology, 253(1-3), 147-152. https://doi.org/10.1016/j.tox.2008.09.005 Hites, R. A. (2011). Dioxins: An Overview and History. Environmental Science & Technology, 45(1), 16-20. https://doi.org/10.1021/es1013664 Hoogenboom, R., Traag, W., Fernandes, A., & Rose, M. (2015). European developments following incidents with dioxins and PCBs in the food and feed chain. Food Control, 50, 670-683. https://doi.org/https://doi.org/10.1016/j.foodcont.2014.10.010 Hsu, M. S., Hsu, K. Y., Wang, S. M., Chou, U., Chen, S. Y., Huang, N. C., Liao, C. Y., Yu, T. P., & Ling, Y. C. (2007). A total diet study to estimate PCDD/Fs and dioxin-like PCBs intake from food in Taiwan. Chemosphere, 67(9), S65-70. https://doi.org/10.1016/j.chemosphere.2006.05.116 Huang, H., & Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. Chemosphere, 31(9), 4099-4117. https://doi.org/https://doi.org/10.1016/0045-6535(95)80011-9 Humblet, O., Birnbaum, L., Rimm, E., Mittleman, M. A., & Hauser, R. (2008). Dioxins and cardiovascular disease mortality. Environ Health Perspect, 116(11), 1443-1448. https://doi.org/10.1289/ehp.11579 Hutzinger, O., Blumich, M. J., v.d.Berg, M., & Olie, K. (1985). Sources and fate of PCDDs and PCDFs: An overview. Chemosphere, 14(6), 581-600. https://doi.org/https://doi.org/10.1016/0045-6535(85)90167-5 Huwe, J., Pagan-Rodriguez, D., Abdelmajid, N., Clinch, N., Gordon, D., Holterman, J., Zaki, E., Lorentzsen, M., & Dearfield, K. (2009). Survey of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and non-ortho-polychlorinated biphenyls in U.S. meat and poultry, 2007-2008: effect of new toxic equivalency factors on toxic equivalency levels, patterns, and temporal trends. J Agric Food Chem, 57(23), 11194-11200. https://doi.org/10.1021/jf902251t IARC. (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monogr Eval Carcinog Risks Hum, 69, 1-631. Ishimaru, N., Takagi, A., Kohashi, M., Yamada, A., Arakaki, R., Kanno, J., & Hayashi, Y. (2009). Neonatal exposure to low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin causes autoimmunity due to the disruption of T cell tolerance. J Immunol, 182(10), 6576-6586. https://doi.org/10.4049/jimmunol.0802289 Ishiniwa, H., Sakai, M., Tohma, S., Matsuki, H., Takahashi, Y., Kajiwara, H., & Sekijima, T. (2013). Dioxin pollution disrupts reproduction in male Japanese field mice. Ecotoxicology, 22(9), 1335-1347. https://doi.org/10.1007/s10646-013-1120-7 JECFA. (2002). Safety evaluation of certain food additives and contaminants / prepared by the fifty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). In. Geneva: World Health Organization. Jenkins, S., Rowell, C., Wang, J., & Lamartiniere, C. A. (2007). Prenatal TCDD exposure predisposes for mammary cancer in rats. Reprod Toxicol, 23(3), 391-396. https://doi.org/10.1016/j.reprotox.2006.10.004 Kakeyama, M., Sone, H., & Tohyama, C. (2008). Perinatal exposure of female rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces central precocious puberty in the offspring. J Endocrinol, 197(2), 351-358. https://doi.org/10.1677/joe-08-0062 Kakutani, H., Yuzuriha, T., Nakao, T., & Ohta, S. (2022). Long-term orally exposure of dioxins affects antigen-specific antibody production in mice. Toxicol Rep, 9, 53-57. https://doi.org/10.1016/j.toxrep.2021.12.011 Keller, J. M., Huet-Hudson, Y., & Leamy, L. J. (2008). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on molar development among non-resistant inbred strains of mice: a geometric morphometric analysis. Growth Dev Aging, 71(1), 3-16. Kirkok, S. K., Kibet, J. K., Kinyanjui, T. K., & Okanga, F. I. (2020). A review of persistent organic pollutants: dioxins, furans, and their associated nitrogenated analogues. SN Applied Sciences, 2(10), 1729. https://doi.org/10.1007/s42452-020-03551-y Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hogstrand, C., Nebbia, C. S., Oswald, I. P., Petersen, A., Rose, M., Roudot, A. C., Schwerdtle, T., Vleminckx, C., Vollmer, G., . . . Hoogenboom, L. R. (2018). Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. Efsa j, 16(11), e05333. https://doi.org/10.2903/j.efsa.2018.5333 Kobets, T., Smith, B. P. C., & Williams, G. M. (2022). Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods, 11(18), 2828. https://www.mdpi.com/2304-8158/11/18/2828 Lee, C. C., Chang, W. H., Lin, H. T., & Chang, J. W. (2020). Spatiotemporal patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls in foodstuffs in air quality regions in Taiwan. J Food Drug Anal, 28(3), 375-398. https://doi.org/10.38212/2224-6614.1216 Lee, C. C., Lin, H. T., Kao, Y. M., Chang, M. H., & Chen, H. L. (2016). Temporal trend of polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran and dioxin like-polychlorinated biphenyl concentrations in food from Taiwan markets during 2004-2012. J Food Drug Anal, 24(3), 644-652. https://doi.org/10.1016/j.jfda.2016.02.006 Lind, P. M., Örberg, J., Edlund, U.-B., Sjöblom, L., & Lind, L. (2004). The dioxin-like pollutant PCB 126 (3,3′,4,4′,5-pentachlorobiphenyl) affects risk factors for cardiovascular disease in female rats. Toxicology Letters, 150(3), 293-299. https://doi.org/https://doi.org/10.1016/j.toxlet.2004.02.008 Lind, P. M., van Bavel, B., Salihovic, S., & Lind, L. (2012). Circulating levels of persistent organic pollutants (POPs) and carotid atherosclerosis in the elderly. Environ Health Perspect, 120(1), 38-43. https://doi.org/10.1289/ehp.1103563 Lohmann, R., & Jones, K. C. (1998). Dioxins and furans in air and deposition: A review of levels, behaviour and processes. Science of the Total Environment, 219(1), 53-81. https://doi.org/https://doi.org/10.1016/S0048-9697(98)00237-X Lombó, M., & Herráez, P. (2021). The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biological Reviews, 96(4), 1243-1262. https://doi.org/https://doi.org/10.1111/brv.12701 Lu, S., Buekens, A., Chen, T., Lin, X., Zhan, M., & Zhang, M. (2020). Dioxins and Dioxin-like Compounds. In A. Nzihou (Ed.), Handbook on Characterization of Biomass, Biowaste and Related By-products (pp. 1211-1265). Springer International Publishing. https://doi.org/10.1007/978-3-030-35020-8_13 Maertens, A., Golden, E., Luechtefeld, T. H., Hoffmann, S., Tsaioun, K., & Hartung, T. (2022). Probabilistic risk assessment - the keystone for the future of toxicology. Altex, 39(1), 3-29. https://doi.org/10.14573/altex.2201081 Malisch, R., & Kotz, A. (2014). Dioxins and PCBs in feed and food — Review from European perspective. Science of the Total Environment, 491-492, 2-10. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.03.022 McKay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 86(3), 343-368. https://doi.org/https://doi.org/10.1016/S1385-8947(01)00228-5 Mescher, M., & Haarmann-Stemmann, T. (2018). Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacology & Therapeutics, 187, 71-87. https://doi.org/https://doi.org/10.1016/j.pharmthera.2018.02.012 Milbrath, M. O. G., Wenger, Y., Chang, C.-W., Emond, C., Garabrant, D., Gillespie, B. W., & Jolliet, O. (2009). Apparent Half-Lives of Dioxins, Furans, and Polychlorinated Biphenyls as a Function of Age, Body Fat, Smoking Status, and Breast-Feeding. Environmental Health Perspectives, 117(3), 417-425. https://doi.org/doi:10.1289/ehp.11781 Mocarelli, P., Gerthoux, P. M., Patterson, D. G., Milani, S., Limonta, G., Bertona, M., Signorini, S., Tramacere, P., Colombo, L., Crespi, C., Brambilla, P., Sarto, C., Carreri, V., Sampson, E. J., Turner, W. E., & Needham, L. L. (2008). Dioxin Exposure, from Infancy through Puberty, Produces Endocrine Disruption and Affects Human Semen Quality. Environmental Health Perspectives, 116(1), 70-77. https://doi.org/doi:10.1289/ehp.10399 Monneret, C. (2017). What is an endocrine disruptor? Comptes Rendus Biologies, 340(9), 403-405. https://doi.org/https://doi.org/10.1016/j.crvi.2017.07.004 Muñoz, M., Gullett, B. K., Touati, A., & Font, R. (2012). Effect of 2,4-Dichlorophenoxyacetic Acid (2,4-D) on PCDD/F Emissions from Open Burning of Biomass. Environmental Science & Technology, 46(17), 9308-9314. https://doi.org/10.1021/es301954t Mukerjee, D. (1998). Health impact of polychlorinated dibenzo-p-dioxins: a critical review. J Air Waste Manag Assoc, 48(2), 157-165. https://doi.org/10.1080/10473289.1998.10463655 Mínguez-Alarcón, L., Sergeyev, O., Burns, J. S., Williams, P. L., Lee, M. M., Korrick, S. A., Smigulina, L., Revich, B., & Hauser, R. (2017). A longitudinal study of Peripubertal serum organochlorine concentrations and semen parameters in young men: The Russian children’s study [Article]. Environmental Health Perspectives, 125(3), 460-466. https://doi.org/10.1289/EHP25 Ngo, T. H., Yang, Y. H., Chen, Y. C., Pan, W. C., & Chi, K. H. (2020). Continuous nationwide atmospheric PCDD/F monitoring network in Taiwan (2006-2016): Variation in concentrations and apportionment of emission sources. Chemosphere, 255, 126979. https://doi.org/10.1016/j.chemosphere.2020.126979 Nishimura, C., Horii, Y., Tanaka, S., Asante, K. A., Ballesteros, F., Viet, P. H., Itai, T., Takigami, H., Tanabe, S., & Fujimori, T. (2017). Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils. Environmental Pollution, 225, 252-260. https://doi.org/https://doi.org/10.1016/j.envpol.2016.10.088 Nukaya, M., Moran, S., & Bradfield, C. A. (2009). The role of the dioxin-responsive element cluster between the Cyp1a1 and Cyp1a2 loci in aryl hydrocarbon receptor biology. Proc Natl Acad Sci U S A, 106(12), 4923-4928. https://doi.org/10.1073/pnas.0809613106 Panteleyev, A. A., & Bickers, D. R. (2006). Dioxin-induced chloracne – reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology, 15(9), 705-730. https://doi.org/https://doi.org/10.1111/j.1600-0625.2006.00476.x Parks, C. G., de Souza Espindola Santos, A., Barbhaiya, M., & Costenbader, K. H. (2017). Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Practice & Research Clinical Rheumatology, 31(3), 306-320. https://doi.org/https://doi.org/10.1016/j.berh.2017.09.005 Parvez, S., Evans, A. M., Lorber, M., Hawkins, B. S., Swartout, J. C., Teuschler, L. K., & Rice, G. E. (2013). A sensitivity analysis using alternative toxic equivalency factors to estimate U.S. dietary exposures to dioxin-like compounds. Regulatory Toxicology and Pharmacology, 67(2), 278-284. https://doi.org/https://doi.org/10.1016/j.yrtph.2013.08.007 Parzefall, W. (2002). Risk assessment of dioxin contamination in human food. Food Chem Toxicol, 40(8), 1185-1189. https://doi.org/10.1016/s0278-6915(02)00059-5 Patrizi, B., & Siciliani de Cumis, M. (2018). TCDD Toxicity Mediated by Epigenetic Mechanisms. International Journal of Molecular Sciences, 19(12), 4101. https://www.mdpi.com/1422-0067/19/12/4101 Pesatori, A. C., Zocchetti, C., Guercilena, S., Consonni, D., Turrini, D., & Bertazzi, P. A. (1998). Dioxin exposure and non-malignant health effects: a mortality study. Occup Environ Med, 55(2), 126-131. https://doi.org/10.1136/oem.55.2.126 Pilsner, J. R., Parker, M., Sergeyev, O., & Suvorov, A. (2017). Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility. Reproductive Toxicology, 69, 221-229. https://doi.org/https://doi.org/10.1016/j.reprotox.2017.03.002 Pirkle, J. L., Wolfe, W. H., Patterson, D. G., Needham, L. L., Michalek, J. E., Miner, J. C., Peterson, M. R., & Phillips, D. L. (1989). Estimates of the half‐life of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin in Vietnam veterans of operation ranch hand. Journal of Toxicology and Environmental Health, 27(2), 165-171. https://doi.org/10.1080/15287398909531288 Poberezhnaya, T. M. (2012). Endogenous sources of dioxin emissions in areas of tectonomagmatic activation using the example of the Sakhalin-Kuril region. Russian Journal of Pacific Geology, 6(6), 433-435. https://doi.org/10.1134/S181971401206005X Pollitt, F. (1999). Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans. Regulatory Toxicology and Pharmacology, 30(2), S63-S68. https://doi.org/https://doi.org/10.1006/rtph.1999.1328 Pompa, G., Caloni, F., & Fracchiolla, M. L. (2003). Dioxin and PCB Contamination of Fish and Shellfish: Assessment of Human Exposure. Review of the International Situation. Veterinary Research Communications, 27(1), 159-167. https://doi.org/10.1023/B:VERC.0000014134.23782.10 Puga, A. (2010). Perspectives on the Potential Involvement of the Ah Receptor-Dioxin Axis in Cardiovascular Disease. Toxicological Sciences, 120(2), 256-261. https://doi.org/10.1093/toxsci/kfq393 Puga, A., Tomlinson, C. R., & Xia, Y. (2005). Ah receptor signals cross-talk with multiple developmental pathways. Biochemical Pharmacology, 69(2), 199-207. https://doi.org/https://doi.org/10.1016/j.bcp.2004.06.043 Quaß, U., Fermann, M., & Bröker, G. (2004). The European Dioxin Air Emission Inventory Project––Final Results. Chemosphere, 54(9), 1319-1327. https://doi.org/https://doi.org/10.1016/S0045-6535(03)00251-0 Rappe, C. (1992). Sources of PCDDs and PCDFs. Introduction. Reactions, levels, patterns, profiles and trends. Chemosphere, 25(1), 41-44. https://doi.org/https://doi.org/10.1016/0045-6535(92)90475-7 Rappe, C. (1996). Sources and environmental concentrations of dioxins and related compounds [Article]. Pure and Applied Chemistry, 68(9), 1781-1789. https://doi.org/10.1351/pac199668091781 Rauscher-Gabernig, E., Mischek, D., Moche, W., & Prean, M. (2013). Dietary intake of dioxins, furans and dioxin-like PCBs in Austria. Food Additives & Contaminants: Part A, 30(10), 1770-1779. https://doi.org/10.1080/19440049.2013.814169 Roseland, J. M. N., Quynh Anh; Williams, Juhi R.; Patterson, Kristine Y.; Showell, Bethany; Pehrsson, Pamela R. (2017). USDA Table of Cooking Yields for Meat and Poultry. SCF, E. (2001). Opinion on the Risk Assessment of Dioxins and Dioxin-like PCBs in Food, 22 November 2000. In. Schecter, A., Birnbaum, L., Ryan, J. J., & Constable, J. D. (2006). Dioxins: An overview. Environmental Research, 101(3), 419-428. https://doi.org/https://doi.org/10.1016/j.envres.2005.12.003 Shen, H., Ding, G., Wu, Y., Pan, G., Zhou, X., Han, J., Li, J., & Wen, S. (2012). Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in breast milk from Zhejiang, China. Environment International, 42, 84-90. https://doi.org/https://doi.org/10.1016/j.envint.2011.04.004 Shin, E.-s., Park, M.-K., Kim, G., Barghi, M., Choi, S.-D., Yang, J., & Chang, Y.-S. (2022). Dietary exposure and potential human health risk of dioxins in South Korea: Application of deterministic and probabilistic methods. Chemosphere, 291, 133018. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133018 Sorg, O. (2014). AhR signalling and dioxin toxicity. Toxicology Letters, 230(2), 225-233. https://doi.org/https://doi.org/10.1016/j.toxlet.2013.10.039 Srogi, K. (2008). Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environmental Chemistry Letters, 6(1), 1-28. https://doi.org/10.1007/s10311-007-0105-2 Stanmore, B. R. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398-427. https://doi.org/https://doi.org/10.1016/j.combustflame.2003.11.004 Steenland, K., Bertazzi, P., Baccarelli, A., & Kogevinas, M. (2004). Dioxin revisited: developments since the 1997 IARC classification of dioxin as a human carcinogen. Environ Health Perspect, 112(13), 1265-1268. https://doi.org/10.1289/ehp.7219 Tsai, P.-C., Ko, Y.-C., Huang, W., Liu, H.-S., & Guo, Y. L. (2007). Increased liver and lupus mortalities in 24-year follow-up of the Taiwanese people highly exposed to polychlorinated biphenyls and dibenzofurans. Science of the Total Environment, 374(2), 216-222. https://doi.org/https://doi.org/10.1016/j.scitotenv.2006.12.024 Tsukimori, K., Tokunaga, S., Shibata, S., Uchi, H., Nakayama, D., Ishimaru, T., Nakano, H., Wake, N., Yoshimura, T., & Furue, M. (2008). Long-term effects of polychlorinated biphenyls and dioxins on pregnancy outcomes in women affected by the Yusho incident [Article]. Environmental Health Perspectives, 116(5), 626-630. https://doi.org/10.1289/ehp.10686 Tsukimori, K., Uchi, H., Mitoma, C., Yasukawa, F., Chiba, T., Todaka, T., Kajiwara, J., Yoshimura, T., Hirata, T., Fukushima, K., Wake, N., & Furue, M. (2012). Maternal exposure to high levels of dioxins in relation to birth weight in women affected by Yusho disease [Article]. Environment International, 38(1), 79-86. https://doi.org/10.1016/j.envint.2011.08.010 Tuomisto, J., Vartiainen, T., & Tuomisto, J. (2011). Synopsis on dioxins and PCBs. U.S. EPA. (2003). Framework for Cumulative Risk Assessment. USEPA. (1994). Use of Monte Carlo Simulation in Risk Assessments; Region 3 Technical Guidance Manual, Risk Assessment. USEPA. (2014). Framework for Human Health Risk Assessment to Inform Decision Making. Van den Berg, M., Birnbaum, L., Bosveld, A. T., Brunström, B., Cook, P., Feeley, M., Giesy, J. P., Hanberg, A., Hasegawa, R., Kennedy, S. W., Kubiak, T., Larsen, J. C., van Leeuwen, F. X., Liem, A. K., Nolt, C., Peterson, R. E., Poellinger, L., Safe, S., Schrenk, D., . . . Zacharewski, T. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect, 106(12), 775-792. https://doi.org/10.1289/ehp.98106775 Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., & Peterson, R. E. (2006). The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci, 93(2), 223-241. https://doi.org/10.1093/toxsci/kfl055 van den Berg, M., Peterson, R. E., & Schrenk, D. (2000). Human risk assessment and TEFs. Food Addit Contam, 17(4), 347-358. https://doi.org/10.1080/026520300283414 Van Der Voet, H., & Slob, W. (2007). Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization. Risk Analysis, 27(2), 351-371. https://doi.org/https://doi.org/10.1111/j.1539-6924.2007.00887.x van Leeuwen, F. X., Feeley, M., Schrenk, D., Larsen, J. C., Farland, W., & Younes, M. (2000). Dioxins: WHO's tolerable daily intake (TDI) revisited. Chemosphere, 40(9-11), 1095-1101. https://doi.org/10.1016/s0045-6535(99)00358-6 Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R., Jr., Lee, D.-H., Shioda, T., Soto, A. M., vom Saal, F. S., Welshons, W. V., Zoeller, R. T., & Myers, J. P. (2012). Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 33(3), 378-455. https://doi.org/10.1210/er.2011-1050 Varrà, M. O., Lorenzi, V., Zanardi, E., Menotta, S., Fedrizzi, G., Angelone, B., Gasparini, M., Fusi, F., Foschini, S., Padovani, A., & Ghidini, S. (2023). Safety Evaluation and Probabilistic Health Risk Assessment of Cow Milk Produced in Northern Italy According to Dioxins and PCBs Contamination Levels. Foods, 12(9), 1869. https://www.mdpi.com/2304-8158/12/9/1869 Walker, N. J., Crockett, P. W., Nyska, A., Brix, A. E., Jokinen, M. P., Sells, D. M., Hailey, J. R., Easterling, M., Haseman, J. K., Yin, M., Wyde, M. E., Bucher, J. R., & Portier, C. J. (2005). Dose-additive carcinogenicity of a defined mixture of "dioxin-like compounds". Environ Health Perspect, 113(1), 43-48. https://doi.org/10.1289/ehp.7351 Warner, M., Mocarelli, P., Brambilla, P., Wesselink, A., Samuels, S., Signorini, S., & Eskenazi, B. (2013). Diabetes, Metabolic Syndrome, and Obesity in Relation to Serum Dioxin Concentrations: The Seveso Women’s Health Study. Environmental Health Perspectives, 121(8), 906-911. https://doi.org/doi:10.1289/ehp.1206113 Warner, M., Mocarelli, P., Samuels, S., Needham, L., Brambilla, P., & Eskenazi, B. (2011). Dioxin Exposure and Cancer Risk in the Seveso Women’s Health Study. Environmental Health Perspectives, 119(12), 1700-1705. https://doi.org/doi:10.1289/ehp.1103720 WHO. (2009). Principles and Methods for the Risk Assessment of Chemicals in Food. WHO. (2016). Dioxins and their effects on human health. https://www.who.int/en/news-room/fact-sheets/detail/dioxins-and-theireffects-on-human-health WHO. (2022). WHO expert consultation on updating the 2005 toxic equivalency factors for dioxin like compounds, including some polychlorinated biphenyls. https://www.who.int/news/item/15-11-2022-who-expert-consultation-on-updating-the-2005-toxic-equivalency-factors-for-dioxin-like-compounds-including-some-polychlorinated-biphenyls World Health, O. (2000). Consultation on assessment of the health risk of dioxins; re-evaluation of the tolerable daily intake (TDI): executive summary. Food Addit Contam, 17(4), 223-240. https://doi.org/10.1080/713810655 Yang, S., Sun, L., Sun, Y., Song, K., Qin, Q., Zhu, Z., & Xue, Y. (2023). Towards an integrated health risk assessment framework of soil heavy metals pollution: Theoretical basis, conceptual model, and perspectives. Environmental Pollution, 316, 120596. https://doi.org/https://doi.org/10.1016/j.envpol.2022.120596 Yonemoto, J. (2000). The Effects of Dioxin on Reproduction and Development. INDUSTRIAL HEALTH, 38(3), 259-268. https://doi.org/10.2486/indhealth.38.259 行政院環境保護署. (2021). 固定污染源戴奧辛及重金屬空氣品質監測及輔導減量計畫. 食藥署. (2012). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2013). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2014). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2015). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2016). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2017). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2018). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2019). 食品中戴奧辛及戴奧辛類多氯聯苯背景值調查與研究. 食藥署. (2020). 食品含戴奧辛及戴奧辛類多氯聯苯處理規範. 國家衛生研究院. (2017). 國家攝食資料庫. 國家衛生研究院. (2020). 食品接觸物質危害性之研析及國家攝食資料庫之系統精進. 國家衛生研究院. (2022). 國家攝食資料庫使用指引. 黃明豐. (2020). 台灣食品中戴奧辛及多氯聯苯限值的演進. https://csucenter.com/Techs/Tech?ID=19 衛福部. (2022a). 食品營養成分資料庫之簡介. 衛福部. (2022b). 食品營養成分資料庫使用說明. 環保署. (2011). 中華民國重大環境事件彙編. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89830 | - |
| dc.description.abstract | 戴奧辛是一種持久性有機污染物,具有高度的親脂性與生物累積性。戴奧辛與生殖功能異常、發育問題、神經毒性、免疫毒性、甲狀腺激素異常及癌症等健康風險有關。研究指出,飲食攝取是人體暴露於戴奧辛的主要途徑。因此,歐洲食品安全局已訂定戴奧辛在食品中的最大限量,以預防戴奧辛對民眾健康產生不良健康效應。目前,台灣的最大限量主要是參考歐洲食品安全局的標準,由於各地區飲食習慣的不同,該標準是否適用於台灣仍待系統性評估。
為了評估台灣食品藥物管理署制定的戴奧辛最大限量是否能夠維護民眾健康,我們進行了系統性機率累積性健康風險評估。本研究假設食品中戴奧辛的殘留濃度屬於截斷常態分布,並分別假設符合最大限值的機率,也就是最大限值為食品中戴奧辛的殘留濃度分布的95%、97%、與99%的信賴區間上限。此分布的最大值為平均值加上5個標準差,最小值等於檢測極限,而此分布仍受變異係數的影響。為此參考國內發表的食品中戴奧辛檢測數據,標準差與平均數的比值(變異係數)為0.1至1.7,取其平均值1.2作為評估的基礎。國人每日食物攝取量和體重皆引用自台灣國家攝食資料庫,並假設為截斷常態分布。使用 Crystal Ball 軟體來執行蒙地卡羅模擬,進行10000次運算。參考世界衛生組織訂定的戴奧辛及多氯聯苯每日耐受量1-4 pg TEQ/kg bw 以及歐洲食品安全局每周耐受量2 pg TEQ/kg bw進行估算民眾的危害指數,並假設為連續型均勻統計分布。在本研究中,因食物攝取量資料庫分為一般民眾和消費者兩個族群,每個族群的年齡層分別為0-3歲、3-6歲、6-12歲、12-16歲、16-18歲、19-65歲和大於65歲,因此我們就每個族群與年齡層分別執行機率累積性健康風險評估。 將最大限值假設為整個戴奧辛殘留濃度分布的95%上限,變異係數固定為1.2時,結果顯示參考世界衛生組織的耐受量下,一般民眾的平均危害指數分別為4.73、2.55、2.18、1.53、1.39、1.45、1.28;在消費者族群中為11.69、6.64、5.89、4.08、3.64、4.36、3.27。所有組別的危害指數都大於1,顯示可能對民眾健康的保護程度不足。英國、匈牙利、法國、奧地利一般民眾組 HI 值的平均值分別為0.78、0.89、1.23、0.97,消費者組 HI 值的平均值分別為1.18、1.76、1.65、1.72。進一步分析對各年齡層危害指數的貢獻度,最高的為魚類及其製品,次要為其他水產類及其製品。危害指數會隨著食品中戴奧辛符合最大限量的機率提高而下降,另外也會隨著檢測數據的變異係數增加而下降。 因戴奧辛檢測成本高,食物種類繁多,要針對每種食物採樣分析至具代表性的樣本數不易。因此本論文建立的方法可以供政府作參考,執行系統性的風險評估,評估當前的戴奧辛最大限量是否有效維護民眾健康,並且探討國人最主要的戴奧辛暴露貢獻源,做為政府市政優先順序之參考。 | zh_TW |
| dc.description.abstract | Dioxins are a group of highly lipophilic and persistent contaminants and ubiquitously accumulated in environment. Exposures to dioxins have been associated with risks of reproductive, developmental, neurodevelopmental immunotoxin, thyroid hormone adverse effects and cancers. Dietary intakes account for more than 95% of dioxin exposures. Therefore, the maximum levels (ML) of dioxins in various foods were set to protect the general public from adverse effects by many international organizations and countries. To evaluate the “safety” of the current ML set by the Taiwan Food and Drug Administration (TFDA), an probabilistic cumulative health risk assessment was developed. The residue distribution of dioxins in a food was assumed to belong to a truncated normal distribution, and their compliance rate is 95%, 97%, and 99% so that its ML equals the upper bound of 95%, 97%, and 99% confidence interval, respectively. Further assumption was made that the maximum (Max) equals the mean + 5 standard deviations (SD) of its distribution, and the minimum (Min) equals the limit of detection. Daily food intake rates and body weight were cited from the National Food Consumption Database of Taiwan and assumed to belong to truncated normal distributions. The Monte Carlo simulation was run using the Crystal ball software for 10000 trials.
According to dioxin data published from Taiwan, the coefficient of variation (CV) in the dioxin residue distributions in food varied from 0.1 to 1.7. In all following simulations, the coefficient of variation was fixed to its average value of 1.2. The tolerable daily intake (TDI) for dioxins and dioxin-like PCBs of 1-4 pg TEQ/kg-day is recommended by the World Health Organization (WHO), and the tolerable weekly intake (TWI) of 2 pg TEQ/kg-week recommended by the European Food Safety Authority (EFSA) are used for assessment. The food consumption rate data are classified into the general public and consumer only, and each category is further stratified into seven age groups: 0-3, 3-6, 6-12, 12-16, 16-18, 19-65, and >65 years old. Based on the TDI by WHO, the mean hazard index(HI) in the general population were 4.73, 2.55, 2.18, 1.53, 1.39, 1.45, and 1.28, and in the consumer were 11.69, 6.64, 5.89, 4.08, 3.64, 4.36, and 3.27. The major contributions to the mean HI were fishes and seafoods to the Taiwan populations. The mean HI in the general population groups in the UK, Hungary, France, and Austria were 0.78, 0.89, 1.23, and 0.97, respectively, and in the consumer groups were 1.18, 1.76, 1.65, and 1.72. With the cost of sampling and analysis of dioxins in food, and numerous categories of food, representative dioxin residue data in food are difficult to obtain for systematical risk assessment. In this study, a simple statistical method is developed for cumulative probabilistic risk assessment to evaluate the protection of the current ML of food. Our results demonstrate that our method is very cost-efficient for systematically evaluate the ML of food and to identify the major exposure sources of dioxins through food consumption to set priority for ML revisions to better protect the general public. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:18:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:18:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract v 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 戴奧辛 3 2.1.1 戴奧辛特性 3 2.1.2 戴奧辛來源 4 2.1.3 戴奧辛排放現況 5 2.1.4 戴奧辛毒性 6 2.1.5戴奧辛作用機制 8 2.2 毒性當量 9 2.4 非基因毒性致癌物 12 2.5 戴奧辛最大限值 13 2.6 戴奧辛耐受量 15 2.7 食品中戴奧辛研究 17 2.8 國家攝食資料庫 19 2.9 台灣食品營養資料庫 20 第三章 方法 22 3.1 研究架構 22 3.2 台灣食品中戴奧辛最大限值 22 3.3 食品中戴奧辛殘留濃度的分布假設 23 3.4 變異係數的假設 24 3.5 飲食攝取量、體重分布 25 3.6 食物脂肪比例 26 3.7 暴露評估 27 3.8 國際間戴奧辛的每日耐受攝取量 27 3.9 危害指數 28 3.10 蒙地卡羅模擬 29 第四章 結果 30 4.1 標準差與平均值比值之比較 30 4.2 戴奧辛攝取量 30 4.3 非致癌風險 32 4.4 國外非致癌風險 33 4.4 各食品項目的貢獻度 34 4.5 敏感度分析 35 第五章 討論 37 5.1 機率性健康風險評估 37 5.2 食品中戴奧辛合格率的假設 38 5.3 戴奧辛攝取量與危害指數 39 5.4 貢獻度比較 42 5.5 研究限制 43 5.6 修訂最大限值 44 第六章 結論 45 參考資料 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 危害指數 | zh_TW |
| dc.subject | 食品 | zh_TW |
| dc.subject | 戴奧辛 | zh_TW |
| dc.subject | 最大限量 | zh_TW |
| dc.subject | 機率性風險評估 | zh_TW |
| dc.subject | 蒙地卡羅模擬 | zh_TW |
| dc.subject | Dioxin | en |
| dc.subject | Food | en |
| dc.subject | Hazard index | en |
| dc.subject | Probabilistic Risk Assessment | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | Maximum level | en |
| dc.title | 系統性評估當前食品中戴奧辛最大限量:機率累積性健康風險評估 | zh_TW |
| dc.title | A Systematic Evaluation of Current Maximum Levels of Dioxins in Foods: A Probabilistic Cumulative Health Risk Assessment Approach | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江素瑛;羅宇軒;黃鈺芳;蕭伊倫 | zh_TW |
| dc.contributor.oralexamcommittee | Su-yin Chiang;Yu-Syuan Luo;Yu-Fang Huang ;I-Lun Hsiao | en |
| dc.subject.keyword | 食品,戴奧辛,最大限量,機率性風險評估,蒙地卡羅模擬,危害指數, | zh_TW |
| dc.subject.keyword | Food,Dioxin,Maximum level,Monte Carlo simulation,Probabilistic Risk Assessment,Hazard index, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU202302831 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
