Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89822
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹zh_TW
dc.contributor.advisorGen-Shuh Wangen
dc.contributor.author吳宛玲zh_TW
dc.contributor.authorWan-Ling Wuen
dc.date.accessioned2023-09-22T16:16:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAdusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.-P., & Criquet, J. (2019). Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Research, 160, 130-147. https://doi.org/https://doi.org/10.1016/j.watres.2019.05.064
Bond, T., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1), 93-113. https://doi.org/10.1080/09593330.2012.705895
Bosire, G. O., & Ngila, J. C. (2016). Assessment of photo-oxidative alterations to natural organic matter in water using fluorescence excitation emission matrices and liquid chromatography-organic carbon detection techniques [10.1039/C5AY02086G]. Analytical Methods, 8(6), 1415-1424. https://doi.org/10.1039/C5AY02086G
Bougeard, C. M. M., Goslan, E. H., Jefferson, B., & Parsons, S. A. (2010). Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Research, 44(3), 729-740. https://doi.org/https://doi.org/10.1016/j.watres.2009.10.008
Bunton, C. A. (2006). The dependence of micellar rate effects upon reaction mechanism. Advances in Colloid and Interface Science, 123-126, 333-343. https://doi.org/https://doi.org/10.1016/j.cis.2006.05.008
Chen, B., & Westerhoff, P. (2010). Predicting disinfection by-product formation potential in water. Water Res, 44(13), 3755-3762. https://doi.org/10.1016/j.watres.2010.04.009
Chen, J., Loeb, S., & Kim, J.-H. (2017). LED revolution: fundamentals and prospects for UV disinfection applications [10.1039/C6EW00241B]. Environmental Science: Water Research & Technology, 3(2), 188-202. https://doi.org/10.1039/C6EW00241B
Chen, Y., Fan, D., Hao, R., Xu, X., & Li, Y. (2023). Structure optimization, optical design and thermal management of UVC LED photoreactor to improve its inactivation efficiency. Optik, 283, 170905. https://doi.org/https://doi.org/10.1016/j.ijleo.2023.170905
Derrien, M., Lee, Y. K., Park, J.-E., Li, P., Chen, M., Lee, S. H., Lee, S. H., Lee, J.-B., & Hur, J. (2017). Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: comparative study of HS chemical fractions and the origins. Environmental Science and Pollution Research, 24(20), 16933-16945. https://doi.org/10.1007/s11356-017-9225-9
Feng, H., Liang, Y. N., & Hu, X. (2022). Natural organic matter (NOM), an underexplored resource for environmental conservation and remediation. Materials Today Sustainability, 19, 100159. https://doi.org/https://doi.org/10.1016/j.mtsust.2022.100159
Gao, Z.-C., Lin, Y.-L., Xu, B., Xia, Y., Hu, C.-Y., Zhang, T.-Y., Cao, T.-C., Chu, W.-H., & Gao, N.-Y. (2019). Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. Water Research, 154, 199-209. https://doi.org/https://doi.org/10.1016/j.watres.2019.02.004
Green, A., Popović, V., Pierscianowski, J., Biancaniello, M., Warriner, K., & Koutchma, T. (2018). Inactivation of Escherichia coli, Listeria and Salmonella by single and multiple wavelength ultraviolet-light emitting diodes. Innovative Food Science & Emerging Technologies, 47, 353-361. https://doi.org/https://doi.org/10.1016/j.ifset.2018.03.019
Green, A., Popović, V., Warriner, K., & Koutchma, T. (2020). The efficacy of UVC LEDs and low pressure mercury lamps for the reduction of Escherichia coli O157:H7 and Listeria monocytogenes on produce. Innovative Food Science & Emerging Technologies, 64, 102410. https://doi.org/https://doi.org/10.1016/j.ifset.2020.102410
Gross, A., Stangl, F., Hoenes, K., Sift, M., & Hessling, M. (2015). Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide. Water, 7(9), 4605-4621. https://www.mdpi.com/2073-4441/7/9/4605
Guo, Y., Liu, C., Ye, R., & Duan, Q. (2020). Advances on Water Quality Detection by UV-Vis Spectroscopy. Applied Sciences, 10(19). https://doi.org/10.3390/app10196874
Heidarinejad, G., Bozorgmehr, N., & Safarzadeh, M. (2020). Effect of highly reflective material on the performance of water ultraviolet disinfection reactor. Journal of Water Process Engineering, 36, 101375. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101375
Ho, C. K. (2009). Evaluation of reflection and refraction in simulations of ultraviolet disinfection using the discrete ordinates radiation model. Water Science and Technology, 59(12), 2421-2428. https://doi.org/10.2166/wst.2009.260
Keshavarzfathy, M., & Taghipour, F. (2019). Radiation modeling of ultraviolet light-emitting diode (UV-LED) for water treatment. Journal of Photochemistry and Photobiology A: Chemistry, 377, 58-66. https://doi.org/https://doi.org/10.1016/j.jphotochem.2019.03.030
Khorasani, H., Xu, J., Nguyen, T., Kralles, Z., Westerhoff, P., Dai, N., & Zhu, Z. (2021). Contribution of wastewater- versus non-wastewater-derived sources to haloacetonitriles formation potential in a wastewater-impacted river. Sci Total Environ, 792, 148355. https://doi.org/10.1016/j.scitotenv.2021.148355
Koutchma, T., & Popović, V. (2019). Chapter 5 - UV Light-Emitting Diodes (LEDs) and Food Safety. In T. Koutchma (Ed.), Ultraviolet LED Technology for Food Applications (pp. 91-117). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817794-5.00005-4
Li, W., Li, M., Bolton, J. R., Qu, J., & Qiang, Z. (2017). Impact of inner-wall reflection on UV reactor performance as evaluated by using computational fluid dynamics: The role of diffuse reflection. Water Research, 109, 382-388. https://doi.org/https://doi.org/10.1016/j.watres.2016.11.068
Liang, L., & Singer, P. C. (2003). Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environmental Science & Technology, 37(13), 2920-2928. https://doi.org/10.1021/es026230q
Liu, L., Hall, G., & Champagne, P. (2016). Effects of Environmental Factors on the Disinfection Performance of a Wastewater Stabilization Pond Operated in a Temperate Climate. Water, 8(1), 5. https://www.mdpi.com/2073-4441/8/1/5
Matafonova, G., & Batoev, V. (2018). Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review. Water Research, 132, 177-189. https://doi.org/https://doi.org/10.1016/j.watres.2017.12.079
Morimoto, Y., Sumitomo, T., Yoshioka, M., & Takemura, T. (2004, 3-7 Oct. 2004). Recent progress on UV lamps for industries. Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting.,
Mostofa, K. M. G., Liu, C.-q., Mottaleb, M. A., Wan, G., Ogawa, H., Vione, D., Yoshioka, T., & Wu, F. (2013). Dissolved Organic Matter in Natural Waters. In K. M. G. Mostofa, T. Yoshioka, A. Mottaleb, & D. Vione (Eds.), Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments (pp. 1-137). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32223-5_1
Pandian, A. M. K., Rajamehala, M., Singh, M. V. P., Sarojini, G., & Rajamohan, N. (2022). Potential risks and approaches to reduce the toxicity of disinfection by-product – A review. Science of The Total Environment, 822, 153323. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153323
Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere, 190, 54-71. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.09.113
Sun, H., Song, X., Ye, T., Hu, J., Hong, H., Chen, J., Lin, H., & Yu, H. (2018). Formation of disinfection by-products during chlorination of organic matter from phoenix tree leaves and Chlorella vulgaris. Environmental Pollution, 243, 1887-1893. https://doi.org/https://doi.org/10.1016/j.envpol.2018.10.021
Tang, H. L., Chen, Y.-C., Regan, J. M., & Xie, Y. F. (2012). Disinfection by-product formation potentials in wastewater effluents and their reductions in a wastewater treatment plant [10.1039/C2EM00015F]. Journal of Environmental Monitoring, 14(6), 1515-1522. https://doi.org/10.1039/C2EM00015F
Tortajada, C., & Rensburg, P. v. (2020). Drink more recycled wastewater. Nature, 577, 26-28. https://doi.org/10.1038/d41586-019-03913-6
Wu, Z., Barua, H., Rylski, J. R., Taylor, J. B., & Kim, J. (2021). A multiple regression model framework for designing a UVC LED reactor for point-of-use water treatment [10.1039/D1EW00215E]. Environmental Science: Water Research & Technology, 7(8), 1516-1529. https://doi.org/10.1039/D1EW00215E
Zhou, H., Tian, L., Ni, M., Zhu, S., Zhang, R., Wang, L., Wang, M., & Wang, Z. (2022). Effect of dissolved organic matter and its fractions on disinfection by-products formation upon karst surface water. Chemosphere, 308, 136324. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136324
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89822-
dc.description.abstract水在我們的日常生活和經濟發展中扮演著至關重要的角色。隨著極端天氣事件越來越頻繁,人們對水資源的重要性有了更深的認識,並開始意識到廢水回收再利用的潛力。因此,確保廢水處理過程中的水質符合再利用要求成為水資源管理的一個主要問題。消毒劑與水中的天然有機物反應會產生消毒副產物,而這些消毒副產物被懷疑對健康有潛在的不良影響。高級氧化處理可以有效去除水中各種形式的雜質,利用羥基自由基降解水中的各種污染物。雖然紫外發光二極體比傳統的鹵素紫外線燈更環保,但發光二極體的能量轉換效率仍然較低。然而相比於鹵素燈,發光二極體在紫外線反應槽中可以實現更均勻的紫外線劑量分佈。
本研究使用台灣污水廠加氯前的放流水作為水樣,選用波長275奈米的紫外發光二極體進行研究,目的是探討最合適的反應槽材質,以最大限度地利用紫外線能量來降解前驅物質和消毒副產物。殺菌實驗結果顯示,石英材質達到99.9%的殺菌效果最快(k值為-0.4918),其次是不銹鋼(-0.1696)和玻璃(-0.0991)。水中餘氯的消耗和氧化效率也表明石英材質最佳(k值為-1.7948和-1.4547),其次是內部包覆鋁箔紙的玻璃反應槽(分別為亮面-1.0142、-0.8329及霧面-1.0275、-0.7566)、不銹鋼(-0.8724、-0.8638)和玻璃(-0.4246、-0.4993)。在數分鐘內的反應試驗中,石英顯示出最出色的表現。而長達1小時的高級氧化處理實驗中添加氯的紫外發光二極體顯示,不銹鋼和包覆鋁箔紙的玻璃反應槽在降解前驅物質和消毒副產物方面效果良好,整體效果優於其他材質的反應槽。從螢光激發/發散陣列圖觀察到,包覆霧面鋁箔紙的玻璃反應槽的降解效果明顯優於包覆亮面鋁箔紙的反應槽。綜合以上結果,本研究建議選擇不銹鋼作為反應槽的材質。儘管不銹鋼在殺菌實驗中並非表現最佳,但在3分鐘內即可達到滅菌效果,且在前驅物質和消毒副產物的降解處理方面具有顯著效果。此外,考慮到台灣多數污水處理廠使用不銹鋼槽體材質,因此在未來的實際應用中,選擇不銹鋼是較為合適的選擇。
zh_TW
dc.description.abstractWater is an essential resource that plays a crucial role in our daily lives and economic growth. With the increasing frequency of extreme weather events, there is a growing recognition of the importance of water resources and the potential for recycling and reusing wastewater. Consequently, ensuring that the water quality in the wastewater treatment process meets the standards for safe reuse has become a significant concern in water resource management. One challenge in water treatment arises from the reactions between disinfectants and natural organic matter in water, which can generate disinfection by-products (DBPs). These by-products are suspected of having adverse health effects. However, advanced oxidation processes (AOPs) have been proven effective in eliminating various types of impurities. By utilizing hydroxyl radicals, AOPs can degrade a wide range of contaminants present in water. While traditional halogen UV lamps have been commonly used in water treatment, ultraviolet light-emitting diode (UV LED) offer a more environmentally friendly alternative. Although UV LEDs have lower energy conversion efficiency compared to halogen lamps, they provide a more uniform distribution of UV energy in the reactor.
In this study, water samples collected from a sewage treatment plant in Taipei, Taiwan before chlorination was used to assess suitable of using UV LED as UV source in UV/chlorine process. A UV LED with a wavelength of 275 nm was selected to investigate the most suitable material for reactors. The objective of this study was to maximize the utilization of UV energy for degrading DBP precursors and DBPs. The results of the sterilization experiment demonstrated that quartz material (k=-0.4918) exhibited the fastest sterilization effect to achieve a 99.9% reduction in microorganisms. Stainless steel (k=-0.1696) and glass (k=-0.0991) followed quartz in terms of sterilization efficiency. Additionally, the consumption and oxidation efficiencies of residual chlorine in water indicated that quartz material (k=-1.7948, -1.4547) performed the best, followed by a glass reactor cladded with aluminum foil (k in glossy=-1.0142, -0.8329 and in matte=-1.0275, -0.7566), stainless steel (k=-0.8724, -0.8638), and glass (k=-0.4246, -0.4993). In experiments conducted within minutes, quartz demonstrated the best performance. When chlorine-added UV LEDs were used in an hour of UV/chlorine treatment, stainless steel and glass reactor cladded with aluminum foil proved their effectiveness in degrading precursor substances and DBPs, outperforming other reactors. Furthermore, the fluorescence excitation−emission matrix (FEEM) spectrum revealed that the glass reactor cladded with matte aluminum foil exhibited a significantly better degradation effect than the reactor cladded with glossy aluminum foil.
Based on the overall results, the study suggests that stainless steel should be chosen as the material for the reactor for UV photolysis. Although stainless steel did not exhibit the highest sterilization efficiency, it achieved the desired sterilization effect within 3 minutes of reaction time and significantly contributed to the degradation of precursor substances and DBPs. Additionally, stainless steel is recommended for future practical AOP applications and is a sensible choice.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:16:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:16:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives of the study 2
Chapter 2 Literature Review 4
2.1 UV light sources and reactors 4
2.2 DBP, precursors, and DBP formation 7
2.3 Previous research related to UV or UV/chlorine processes 9
Chapter 3 Materials and Methods 13
3.1 Samples collection and preparation 13
3.2 UVC-LED Device in the AOP experiment 14
3.2.1 Reactors 14
3.2.2 UVC-LED light source 15
3.3 Experimental procedures 16
3.3.1 Sterilization 16
3.3.2 Free chlorine consumption simulations 17
3.3.3 UVC-LED/chlorine photolysis processes 18
3.4 Laboratory analysis 19
Chapter 4 Results and Discussions 20
4.1 Effect of reactor materials on sterilization 20
4.2 Degradations of organic matters with UVC-LED 21
4.2.1 Free chlorine consumptions 21
4.2.2 DBP formation 25
4.2.3 UV-Vis scan spectrum 28
4.2.4 FEEM spectrum 30
4.2.5 The precursors and DBPs/NPDOC 33
4.3 DBPFPs after UVC-LED/chlorine treatments 36
4.3.1 DBPFPs 36
4.3.2 UV-Vis scan spectrum 39
4.3.3 FEEM spectrum 40
4.3.4 The precursors and DBPFPs/NPDOC 43
Chapter 5 Conclusions 46
REFERENCE 48
Appendix 52
-
dc.language.isoen-
dc.title不同材質反應槽對高級氧化廢水處理效能之研究zh_TW
dc.titleEfficiencies of AOP Wastewater Treatment with Reactors Made of Different Materialsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡詩偉;童心欣;林財富zh_TW
dc.contributor.oralexamcommitteeShih-Wei Tsai;Hsin-Hsin Tung;Tsair-Fuh Linen
dc.subject.keyword消毒副產物,高級氧化處理,紫外發光二極體,紫外線反應槽性能,zh_TW
dc.subject.keyworddisinfection by-products,advanced oxidation processes,ultraviolet light-emitting diode,UV reactor performance,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202303753-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved