請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89806完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許秉寧 | zh_TW |
| dc.contributor.advisor | Ping-Ning Hsu | en |
| dc.contributor.author | 謝侑靜 | zh_TW |
| dc.contributor.author | Yu-Ching Hsieh | en |
| dc.date.accessioned | 2023-09-22T16:11:52Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Heymann, F. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatol. 62, 279-291 (2015).
Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996-1006 (2013). Hoechst, B. et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatol. 50, 799-807 (2009). Lassen, M. G., Lukens, J. R., Dolina, J. S., Brown, M. G. & Hahn, Y. S. Intrahepatic IL-10 maintains NKG2A+ Ly49− liver NK cells in a functionally hyporesponsive state. J. Immunol. 184, 2693-2701 (2010). Grütz, G. New insights into the molecular mechanism of interleukin‐10‐mediated immunosuppression. J. Leukoc. Biol. 77, 3-15 (2005). Yue, F. Y. et al. Interleukin‐10 is a growth factor for human melanoma cells and down‐regulates HLA class‐I, HLA class‐II and ICAM‐1 molecules. Int. J. Cancer 71, 630-637 (1997). Dokka, S. et al. Interleukin-10-mediated inhibition of free radical generation in macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L1196-L1202 (2001). Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol 3, 383-403 (2018). https://doi.org:10.1016/s2468-1253(18)30056-6 Trépo, C., Chan, H. L. & Lok, A. Hepatitis B virus infection. Lancet 384, 2053-2063 (2014). https://doi.org:10.1016/s0140-6736(14)60220-8 Chisari, F. V., Isogawa, M. & Wieland, S. F. Pathogenesis of hepatitis B virus infection. Pathol. Biol. (Paris) 58, 258-266 (2010). https://doi.org:10.1016/j.patbio.2009.11.001 Ferrari, C. et al. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J. Immunol. 145, 3442-3449 (1990). Xu, L., Yin, W., Sun, R., Wei, H. & Tian, Z. Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatol. 59, 443-452 (2014). https://doi.org:10.1002/hep.26668 Ye, B. et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 6, e1694 (2015). https://doi.org:10.1038/cddis.2015.42 Block, T. M. et al. Chronic hepatitis B: what should be the goal for new therapies? Antiviral Res. 98, 27-34 (2013). https://doi.org:10.1016/j.antiviral.2013.01.006 Dienstag, J. L. Benefits and risks of nucleoside analog therapy for hepatitis B. Hepatol. 49, S112-121 (2009). https://doi.org:10.1002/hep.22920 Lok, A. S., Zoulim, F., Dusheiko, G. & Ghany, M. G. Hepatitis B cure: From discovery to regulatory approval. J. Hepatol. 67, 847-861 (2017). https://doi.org:10.1016/j.jhep.2017.05.008 Perrillo, R. Benefits and risks of interferon therapy for hepatitis B. Hepatol. 49, S103-111 (2009). https://doi.org:10.1002/hep.22956 Hu, J. et al. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect. Dis. 5, 659-674 (2019). https://doi.org:10.1021/acsinfecdis.8b00081 Milich, D. & Liang, T. J. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatol. 38, 1075-1086 (2003). https://doi.org:10.1053/jhep.2003.50453 Viswanathan, U. et al. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res. 182, 104917 (2020). https://doi.org:10.1016/j.antiviral.2020.104917 Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001). https://doi.org:10.1038/35099560 Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529 (2004). https://doi.org:10.1126/science.1093620 Moretta, L. et al. Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol. Lett. 100, 7-13 (2005). https://doi.org:10.1016/j.imlet.2005.07.004 Thimme, R. et al. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77, 68-76 (2003). https://doi.org:10.1128/jvi.77.1.68-76.2003 Alberti, A., Diana, S., Sculard, G. H., Eddleston, A. L. & Williams, R. Detection of a new antibody system reacting with Dane particles in hepatitis B virus infection. Br. Med. J. 2, 1056-1058 (1978). https://doi.org:10.1136/bmj.2.6144.1056 Grady, G. F. et al. Hepatitis B immune globulin for accidental exposures among medical personnel: final report of a multicenter controlled trial. J. Infect Dis. 138, 625-638 (1978). https://doi.org:10.1093/infdis/138.5.625 Yang, P. L., Althage, A., Chung, J. & Chisari, F. V. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl. Acad. Sci. U.S.A. 99, 13825-13830 (2002). https://doi.org:10.1073/pnas.202398599 Chen, Q. et al. Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407, 916-920 (2000). https://doi.org:10.1038/35038103 Dibra, D. et al. Interleukin-30: a novel antiinflammatory cytokine candidate for prevention and treatment of inflammatory cytokine-induced liver injury. Hepatol. 55, 1204-1214 (2012). https://doi.org:10.1002/hep.24814 Jankowski, M., Kopiński, P. & Goc, A. Interleukin-27: biological properties and clinical application. Arch. Immunol. Ther. Exp. (Warsz) 58, 417-425 (2010). https://doi.org:10.1007/s00005-010-0098-6 Jones, G. W., Hill, D. G., Cardus, A. & Jones, S. A. IL-27: a double agent in the IL-6 family. Clin. Exp. Immunol. 193, 37-46 (2018). https://doi.org:10.1111/cei.13116 Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172, 2225-2231 (2004). https://doi.org:10.4049/jimmunol.172.4.2225 Wang, X., Lupardus, P., Laporte, S. L. & Garcia, K. C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29-60 (2009). https://doi.org:10.1146/annurev.immunol.24.021605.090616 Dagil, R. et al. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation: insight from structures of the prolactin receptor. Struct. 20, 270-282 (2012). https://doi.org:10.1016/j.str.2011.12.010 Rousseau, F. et al. IL-27 structural analysis demonstrates similarities with ciliary neurotrophic factor (CNTF) and leads to the identification of antagonistic variants. Proc. Natl. Acad. Sci. U.S.A. 107, 19420-19425 (2010). https://doi.org:10.1073/pnas.1005793107 Dietrich, C., Candon, S., Ruemmele, F. M. & Devergne, O. A soluble form of IL-27Rα is a natural IL-27 antagonist. J. Immunol. 192, 5382-5389 (2014). https://doi.org:10.4049/jimmunol.1303435 Kourko, O., Seaver, K., Odoardi, N., Basta, S. & Gee, K. IL-27, IL-30, and IL-35: A Cytokine Triumvirate in Cancer. Front. Oncol. 9, 969 (2019). https://doi.org:10.3389/fonc.2019.00969 Batten, M. & Ghilardi, N. The biology and therapeutic potential of interleukin 27. J. Mol. Med. (Berl) 85, 661-672 (2007). https://doi.org:10.1007/s00109-007-0164-7 Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221-242 (2007). https://doi.org:10.1146/annurev.immunol.22.012703.104758 Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779-790 (2002). https://doi.org:10.1016/s1074-7613(02)00324-2 Wirtz, S. et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J. Immunol. 174, 2814-2824 (2005). https://doi.org:10.4049/jimmunol.174.5.2814 Guzzo, C., Ayer, A., Basta, S., Banfield, B. W. & Gee, K. IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes. J. Immunol. 188, 864-873 (2012). https://doi.org:10.4049/jimmunol.1101912 Petes, C., Mariani, M. K., Yang, Y., Grandvaux, N. & Gee, K. Interleukin (IL)-6 Inhibits IL-27- and IL-30-Mediated Inflammatory Responses in Human Monocytes. Front. Immunol. 9, 256 (2018). https://doi.org:10.3389/fimmu.2018.00256 Petes, C., Mintsopoulos, V., Finnen, R. L., Banfield, B. W. & Gee, K. The effects of CD14 and IL-27 on induction of endotoxin tolerance in human monocytes and macrophages. J. Biol. Chem. 293, 17631-17645 (2018). https://doi.org:10.1074/jbc.RA118.003501 Petes, C., Odoardi, N., Plater, S. M., Martin, N. L. & Gee, K. IL-27 amplifies cytokine responses to Gram-negative bacterial products and Salmonella typhimurium infection. Sci. Rep. 8, 13704 (2018). https://doi.org:10.1038/s41598-018-32007-y Petes, C. et al. IL-27 enhances LPS-induced IL-1β in human monocytes and murine macrophages. J. Leukoc. Biol. 102, 83-94 (2017). https://doi.org:10.1189/jlb.3A0316-098R Feng, X. M. et al. Interleukin-27 upregulates major histocompatibility complex class II expression in primary human endothelial cells through induction of major histocompatibility complex class II transactivator. Hum. Immunol. 68, 965-972 (2007). https://doi.org:10.1016/j.humimm.2007.10.004 Feng, X. M. et al. Regulation of the class II and class I MHC pathways in human THP-1 monocytic cells by interleukin-27. Biochem. Biophys. Res. Commun. 367, 553-559 (2008). https://doi.org:10.1016/j.bbrc.2007.12.154 Kamakura, M. et al. Regulation of IL-27p28 gene by lipopolysaccharide in dendritic DC2.4 cells. Biochem. Biophys. Res. Commun. 349, 1372-1377 (2006). https://doi.org:10.1016/j.bbrc.2006.09.004 Molle, C. et al. IL-27 synthesis induced by TLR ligation critically depends on IFN regulatory factor 3. J. Immunol. 178, 7607-7615 (2007). https://doi.org:10.4049/jimmunol.178.12.7607 Beizavi, Z., Zohouri, M., Asadipour, M. & Ghaderi, A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int. Rev. Immunol. 40, 319-329 (2021). https://doi.org:10.1080/08830185.2020.1840565 Shimizu, M. et al. Antiangiogenic and antitumor activities of IL-27. J. Immunol. 176, 7317-7324 (2006). https://doi.org:10.4049/jimmunol.176.12.7317 Swaminathan, S., Dai, L., Lane, H. C. & Imamichi, T. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection. Cytokine Growth Factor Rev. 24, 571-577 (2013). https://doi.org:10.1016/j.cytogfr.2013.07.001 Owaki, T. et al. IL-27 suppresses CD28-mediated [correction of medicated] IL-2 production through suppressor of cytokine signaling 3. J. Immunol. 176, 2773-2780 (2006). https://doi.org:10.4049/jimmunol.176.5.2773 Villarino, A. V. et al. IL-27 limits IL-2 production during Th1 differentiation. J. Immunol. 176, 237-247 (2006). https://doi.org:10.4049/jimmunol.176.1.237 Kim, G., Shinnakasu, R., Saris, C. J., Cheroutre, H. & Kronenberg, M. A novel role for IL-27 in mediating the survival of activated mouse CD4 T lymphocytes. J. Immunol. 190, 1510-1518 (2013). https://doi.org:10.4049/jimmunol.1201017 Matsui, M. et al. Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing antibody-dependent cellular cytotoxicity. Cancer Res. 69, 2523-2530 (2009). https://doi.org:10.1158/0008-5472.Can-08-2793 Mittal, A., Murugaiyan, G., Beynon, V., Hu, D. & Weiner, H. L. IL-27 induction of IL-21 from human CD8+ T cells induces granzyme B in an autocrine manner. Immunol. Cell. Biol. 90, 831-835 (2012). https://doi.org:10.1038/icb.2012.14 Schneider, R., Yaneva, T., Beauseigle, D., El-Khoury, L. & Arbour, N. IL-27 increases the proliferation and effector functions of human naïve CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur. J. Immunol. 41, 47-59 (2011). https://doi.org:10.1002/eji.201040804 Zwirner, N. W. & Ziblat, A. Regulation of NK Cell Activation and Effector Functions by the IL-12 Family of Cytokines: The Case of IL-27. Front. Immunol. 8, 25 (2017). https://doi.org:10.3389/fimmu.2017.00025 Cox, J. H. et al. IL-27 promotes T cell-dependent colitis through multiple mechanisms. J. Exp. Med. 208, 115-123 (2011). https://doi.org:10.1084/jem.20100410 Huber, M. et al. IL-27 inhibits the development of regulatory T cells via STAT3. Int. Immunol. 20, 223-234 (2008). https://doi.org:10.1093/intimm/dxm139 Kalliolias, G. D. & Ivashkiv, L. B. IL-27 activates human monocytes via STAT1 and suppresses IL-10 production but the inflammatory functions of IL-27 are abrogated by TLRs and p38. J. Immunol. 180, 6325-6333 (2008). https://doi.org:10.4049/jimmunol.180.9.6325 Batten, M. et al. Cutting edge: IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells. J. Immunol. 180, 2752-2756 (2008). https://doi.org:10.4049/jimmunol.180.5.2752 Clement, M. et al. Cytomegalovirus-Specific IL-10-Producing CD4+ T Cells Are Governed by Type-I IFN-Induced IL-27 and Promote Virus Persistence. PLoS Pathog. 12, e1006050 (2016). https://doi.org:10.1371/journal.ppat.1006050 Iyer, S. S., Ghaffari, A. A. & Cheng, G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J. Immunol. 185, 6599-6607 (2010). https://doi.org:10.4049/jimmunol.1002041 Patin, E. C. et al. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. J. Immunol. 197, 208-221 (2016). https://doi.org:10.4049/jimmunol.1501204 Anderson, C. F., Stumhofer, J. S., Hunter, C. A. & Sacks, D. IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J. Immunol. 183, 4619-4627 (2009). https://doi.org:10.4049/jimmunol.0804024 Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 7, 929-936 (2006). https://doi.org:10.1038/ni1375 Diveu, C. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol. 182, 5748-5756 (2009). https://doi.org:10.4049/jimmunol.0801162 Murugaiyan, G. et al. IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+ T cells. J. Immunol. 183, 2435-2443 (2009). https://doi.org:10.4049/jimmunol.0900568 Stumhofer, J. S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937-945 (2006). https://doi.org:10.1038/ni1376 Findlay, E. G. et al. Essential role for IL-27 receptor signaling in prevention of Th1-mediated immunopathology during malaria infection. J. Immunol. 185, 2482-2492 (2010). https://doi.org:10.4049/jimmunol.0904019 Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19, 657-667 (2003). https://doi.org:10.1016/s1074-7613(03)00298-x Hölscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol. 174, 3534-3544 (2005). https://doi.org:10.4049/jimmunol.174.6.3534 Rosas, L. E. et al. Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to leishmania donovani infection but develop severe liver immunopathology. Am. J. Pathol. 168, 158-169 (2006). https://doi.org:10.2353/ajpath.2006.050013 Kim, P. S. & Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol. 22, 223-230 (2010). Mumprecht, S., Schürch, C., Schwaller, J., Solenthaler, M. & Ochsenbein, A. F. Programmed death 1 signaling on chronic myeloid leukemia–specific T cells results in T-cell exhaustion and disease progression. Blood 114, 1528-1536 (2009). https://doi.org:10.1182/blood-2008-09-179697 Lin, Y.-J. et al. Hepatitis B virus core antigen determines viral persistence in a C57BL/6 mouse model. Proc. Natl. Acad. Sci. U.S.A. 107, 9340-9345 (2010). Zhu, C. et al. Hepatitis B virus enhances interleukin-27 expression both in vivo and in vitro. Clin. Immunol. 131, 92-97 (2009). Zhang, G. L. et al. High level of IL‐27 positively correlated with Th17 cells may indicate liver injury in patients infected with HBV. Liver Int. 34, 266-273 (2014). Wang, H.-L., Zhang, H.-Y., Zhai, Z.-L. & Zhou, X. The correlation between hepatitis B virus infection and IL-27. Biomed. Mater. Eng. 22, 187-193 (2012). Zhang, G.-l. et al. Elevated serum IgG levels positively correlated with IL-27 may indicate poor outcome in patients with HBV-related acute-on-chronic liver failure. J. Immunol. Res. 2019 (2019). Yoshida, H. et al. WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15, 569-578 (2001). Goldberg, R. et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J. Immunol. 173, 6465-6471 (2004). Karin, N., Goldberg, R., Wildbaum, G., Zohar, Y. & Maor, G. Suppression of Ongoing Adjuvant-Induced. J. Immunol. 173, 1171-1178 (2004). Himeno, A. Y. et al. Hyperproduction of Proinflammatory. J. Immunol. 172, 3590-3596 (2004). Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19, 657-667 (2003). Hölscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J. Immunol. 174, 3534-3544 (2005). Wang, S. et al. Hepatitis B virus surface antigen selectively inhibits TLR2 ligand–induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J. Immunol. 190, 5142-5151 (2013). Shi, B. et al. HBsAg inhibits IFN-α production in plasmacytoid dendritic cells through TNF-α and IL-10 induction in monocytes. PLoS One (2012). Oquendo, J., Dubanchet, S., Capel, F., Mabit, H. & Petit, M. Suppressive effect of hepatitis B virus on the induction of interleukin-1 beta and interleukin-6 gene expression in the THP-1 human monocytic cell line. Eur. Cytokine Netw. 7, 793-800 (1996). Zhu, C. et al. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat. Commun. 6, 6072 (2015). Karakhanova, S., Bedke, T., Enk, A. H. & Mahnke, K. IL-27 renders DC immunosuppressive by induction of B7-H1. Journal of leukocyte biology 89, 837-845 (2011). Hölscher, C. et al. The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. The Journal of Immunology 174, 3534-3544 (2005). Iyer, S. S., Ghaffari, A. A. & Cheng, G. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. The Journal of Immunology 185, 6599-6607 (2010). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89806 | - |
| dc.description.abstract | 持續性B型肝炎病毒(HBV) 感染是導致肝硬化或肝癌死亡風險高的一個重要因素。 儘管存在提供高保護率的預防性疫苗,但慢性B型肝炎帶原攜帶者仍然因 T 細胞反應性受損而無法有效清除體內病毒。 因此,闡明在持續性 HBV 感染的情況下免疫無反應的機制至關重要。 在這篇研究當中,我們在肝臟先從組織核糖核酸定序觀察到白細胞介素 27 (IL-27)在 pAAV/HBV1.2 轉染小鼠的肝臟內有上升的趨勢,也在蛋白質層級中確認肝臟中的IL-27會被B型肝炎病毒誘導並產生。此外,我們透過不同小鼠品系對於病毒清除速率的不同以及核心抗原(Core antigen)缺乏的B型肝炎病毒質體發現了B型肝炎病毒所誘導產生的 IL-27 與病毒持續感染呈現正相關。 而在持續性B型肝炎病毒感染的小鼠肝臟中,出現了一群PD-1+TIM3+的CD8 T細胞群,並且隨著時間增加,這群細胞比例也有所增加,且這群細胞也功能失調(dysfunction)。除此之外,我們發現有一部分由B型肝炎病毒所誘導產生的IL-27源自於巨噬細胞譜系細胞(Macrophage-lineage cells),並以氯膦酸鹽脂質體(Clodronate liposome)將肝臟中的巨噬細胞譜系細胞清除後偵測肝臟中IL-27的量加以證明。最後,我們在IL-27 缺陷小鼠(IL-27-/- mice)體內看到了相較於控制組小鼠(WT)更快的病毒清除率,且那群PD-1+TIM3+ CD8 T細胞群在持續性B型肝炎病毒感染小鼠的肝臟中也顯著降低。此外,在IL-27缺陷小鼠的肝臟中這群CD8 T細胞的功能失調也出現扭轉。 我們的結果顯示著B型肝炎病毒可誘導肝臟微環境之IL-27,且可造成對於肝臟免疫功能的抑制作用,因而增進B型肝炎病毒的持續性感染。這些結果暗示了IL-27在B型肝炎病毒感染期間於肝臟中的抑制作用及其重要性,未來IL-27或許能作為慢性B型肝炎治療的潛在突破點。 | zh_TW |
| dc.description.abstract | Persistent hepatitis B virus (HBV) infection is a prominent factor that causes the high risk of death from cirrhosis or liver cancer. Despite the existence of preventive vaccines that provide a high protection rate, chronic HBV carriers still suffer from failure of viral clearance. Therefore, it is crucial to elucidate the mechanisms of immune tolerance in cases of persistent HBV infection. Here, we observed that interleukin-27 (IL-27) level was strongly induced in the liver of pAAV/HBV1.2-transfected mice by high-throughput sequencing of RNAs (RNA-seq). Moreover, based on core antigen that determines the viral clearance, we found that the elevation of HBV-induced IL-27 was highly correlated with HBV viral persistence, which is characterized by CD8 dysfunction with impaired IFN𝛾 production and enhanced expression of PD-1 and TIM3 in liver infiltrating CD8 T cells, through HBV with core null mutation. To trace the source, we found that a partial of HBV-induced IL-27 is produced by macrophage-lineage cells, and verified through macrophage depletion by clodronate liposomes. Finally, IL-27-/- mice had an enhanced viral clearance, reduced frequency of PD-1+TIM3+ CD8 T cell population, compared to wild-type mice. Besides, the dysfunction of these CD8 T cells was reversed in the liver of IL-27-/- mice. Our findings demonstrated that HBV could induce IL-27 in the liver microenvironment and exert the inhibitory effect on hepatic immune system, which improved the persistence of HBV infection. These results implied the inhibitory role and the importance of IL-27 in the liver during HBV infection and implicated IL-27 as a potential therapeutic target for chronic hepatitis B. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:11:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:11:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents v Chapter 1 Introduction 1 1.1 Background 1 1.2 Rationale 10 1.3 Specific aims 11 Chapter 2 Materials and Methods 12 2.1 Materials 12 2.2 Methods 16 Chapter 3 Results 24 3.1 IL-27 production is induced under HBV transfection mouse model 24 3.2 HBV persistence leads to CD8 T cell dysfunction within intrahepatic lymphocytes (IHLs) 25 3.3 IL-27 production is correlated to HBV persistence 26 3.4 Macrophage-lineage cells may be one of the sources that produces IL-27 under HBV infection 26 3.5 CD8 T cell dysfunction was reversed in IL-27 knockout mice and IL-27-/- mice accelerates the clearance of viral titer 28 Chapter 4 Discussion 30 Chapter 5 Summary 33 Figures 34 References 44 | - |
| dc.language.iso | en | - |
| dc.subject | 介白素-27 | zh_TW |
| dc.subject | 巨噬細胞譜系細胞 | zh_TW |
| dc.subject | B型肝炎病毒 | zh_TW |
| dc.subject | Macrophage-lineage cells | en |
| dc.subject | Hepatitis B virus | en |
| dc.subject | IL-27 | en |
| dc.title | B型肝炎病毒可誘導肝臟微環境中IL-27的表現並與病毒的持續感染相關 | zh_TW |
| dc.title | Hepatitis B virus induces IL-27 expression within liver microenvironment and is associated with viral persistence | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 朱清良 | zh_TW |
| dc.contributor.coadvisor | Ching-Liang Chu | en |
| dc.contributor.oralexamcommittee | 全以祖 | zh_TW |
| dc.contributor.oralexamcommittee | I-Tsu Chyuan | en |
| dc.subject.keyword | 介白素-27,B型肝炎病毒,巨噬細胞譜系細胞, | zh_TW |
| dc.subject.keyword | IL-27,Hepatitis B virus,Macrophage-lineage cells, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202303727 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2028-08-08 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
