請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89802
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方偉宏 | zh_TW |
dc.contributor.advisor | Woei-horng Fang | en |
dc.contributor.author | 方羿凱 | zh_TW |
dc.contributor.author | Yi-Kai Fang | en |
dc.date.accessioned | 2023-09-22T16:10:47Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | Agemizu, Y., Uematsu, N., & Yamamoto, K. (1999). DNA sequence analysis of spontaneous tonB deletion mutations in a polA1 strain of Escherichia coli K12. Biochem Biophys Res Commun, 261(3), 584-589. https://doi.org/10.1006/bbrc.1999.1074
Albertson, T. M., & Preston, B. D. (2006). DNA replication fidelity: proofreading in trans. Curr Biol, 16(6), R209-211. https://doi.org/10.1016/j.cub.2006.02.031 Astatke, M., Ng, K., Grindley, N. D., & Joyce, C. M. (1998). A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proc Natl Acad Sci U S A, 95(7), 3402-3407. https://doi.org/10.1073/pnas.95.7.3402 Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol, 58(1), 61-70. https://doi.org/10.1111/j.1365-2958.2005.04805.x Brautigam, C. A., & Steitz, T. A. (1998). Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol, 8(1), 54-63. https://doi.org/10.1016/s0959-440x(98)80010-9 Brutlag, D., & Kornberg, A. (1972). Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem, 247(1), 241-248. https://www.ncbi.nlm.nih.gov/pubmed/4336040 Bzymek, M., Saveson, C. J., Feschenko, V. V., & Lovett, S. T. (1999). Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. J Bacteriol, 181(2), 477-482. https://doi.org/10.1128/JB.181.2.477-482.1999 Caglayan, M. (2020). Pol beta gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair (Amst), 95, 102945. https://doi.org/10.1016/j.dnarep.2020.102945 Cai, H., Yu, H., McEntee, K., & Goodman, M. F. (1995). Purification and properties of DNA polymerase II from Escherichia coli. Methods Enzymol, 262, 13-21. https://doi.org/10.1016/0076-6879(95)62004-4 Chang, H. L., Su, K. Y., Goodman, S. D., Chou, N. A., Lin, K. C., Cheng, W. C., Lin, L. I., Chang, S. Y., & Fang, W. H. (2020). Proofreading of single nucleotide insertion/deletion replication errors analyzed by MALDI-TOF mass spectrometry assay. DNA Repair (Amst), 88, 102810. https://doi.org/10.1016/j.dnarep.2020.102810 Coukell, M. B., & Yanofsky, C. (1970). Increased frequency of deletions in DNA polymerase mutants of Escherichia coli. Nature, 228(5272), 633-635. https://doi.org/10.1038/228633a0 Cowart, M., Gibson, K. J., Allen, D. J., & Benkovic, S. J. (1989). DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry, 28(5), 1975-1983. https://doi.org/10.1021/bi00431a004 Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Eng, 3(6), 461-467. https://doi.org/10.1093/protein/3.6.461 Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. https://doi.org/10.1021/bi00216a031 Dorawa, S., Werbowy, O., Plotka, M., Kaczorowska, A. K., Makowska, J., Kozlowski, L. P., Fridjonsson, O. H., Hreggvidsson, G. O., Aevarsson, A., & Kaczorowski, T. (2022). Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci, 23(14). https://doi.org/10.3390/ijms23147945 Doublie, S., Sawaya, M. R., & Ellenberger, T. (1999). An open and closed case for all polymerases. Structure, 7(2), R31-35. https://doi.org/10.1016/S0969-2126(99)80017-3 Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., & Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391(6664), 251-258. https://doi.org/10.1038/34593 Echols, H., & Goodman, M. F. (1991). Fidelity mechanisms in DNA replication. Annu Rev Biochem, 60, 477-511. https://doi.org/10.1146/annurev.bi.60.070191.002401 Fix, D. F., Burns, P. A., & Glickman, B. W. (1987). DNA sequence analysis of spontaneous mutation in a PolA1 strain of Escherichia coli indicates sequence-specific effects. Mol Gen Genet, 207(2-3), 267-272. https://doi.org/10.1007/BF00331588 Friedberg, E. C. (2003). DNA damage and repair. Nature, 421(6921), 436-440. https://doi.org/10.1038/nature01408 Garcia-Diaz, M., & Kunkel, T. A. (2006). Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci, 31(4), 206-214. https://doi.org/10.1016/j.tibs.2006.02.004 Goodman, M. F. (2002). Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem, 71, 17-50. https://doi.org/10.1146/annurev.biochem.71.083101.124707 Huang, H., Chopra, R., Verdine, G. L., & Harrison, S. C. (1998). Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science, 282(5394), 1669-1675. https://doi.org/10.1126/science.282.5394.1669 Joyce, C. M., & Grindley, N. D. (1983). Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli. Proc Natl Acad Sci U S A, 80(7), 1830-1834. https://doi.org/10.1073/pnas.80.7.1830 Kamble, P., Hall, K., Chandak, M., Tang, Q., & Caglayan, M. (2021). DNA ligase I fidelity mediates the mutagenic ligation of pol beta oxidized and mismatch nucleotide insertion products in base excision repair. J Biol Chem, 296, 100427. https://doi.org/10.1016/j.jbc.2021.100427 Lackey, D., Krauss, S. W., & Linn, S. (1985). Characterization of DNA polymerase I*, a form of DNA polymerase I found in Escherichia coli expressing SOS functions. J Biol Chem, 260(5), 3178-3184. https://www.ncbi.nlm.nih.gov/pubmed/3882707 Li, Y., Korolev, S., & Waksman, G. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J, 17(24), 7514-7525. https://doi.org/10.1093/emboj/17.24.7514 Loeb, L. A. (2001). A mutator phenotype in cancer. Cancer Res, 61(8), 3230-3239. https://www.ncbi.nlm.nih.gov/pubmed/11309271 Makiela-Dzbenska, K., Jaszczur, M., Banach-Orlowska, M., Jonczyk, P., Schaaper, R. M., & Fijalkowska, I. J. (2009). Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol, 74(5), 1114-1127. https://doi.org/10.1111/j.1365-2958.2009.06921.x Mathew, C. G. (1985). Radiolabeling of DNA by nick translation. Methods Mol Biol, 2, 257-261. https://doi.org/10.1385/0-89603-064-4:257 Modrich, P. (1987). DNA mismatch correction. Annu Rev Biochem, 56, 435-466. https://doi.org/10.1146/annurev.bi.56.070187.002251 Modrich, P. (1989). Methyl-directed DNA mismatch correction. J Biol Chem, 264(12), 6597-6600. https://www.ncbi.nlm.nih.gov/pubmed/2651430 Modrich, P. (1991). Mechanisms and biological effects of mismatch repair. Annu Rev Genet, 25, 229-253. https://doi.org/10.1146/annurev.ge.25.120191.001305 Napolitano, R., Janel-Bintz, R., Wagner, J., & Fuchs, R. P. (2000). All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J, 19(22), 6259-6265. https://doi.org/10.1093/emboj/19.22.6259 Nusslein, V., Otto, B., Bonhoeffer, F., & Schaller, H. (1971). Function of DNA polymerase 3 in DNA replication. Nat New Biol, 234(52), 285-286. https://doi.org/10.1038/newbio234285a0 Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., & Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature, 313(6005), 762-766. https://doi.org/10.1038/313762a0 Parsons, R., Li, G. M., Longley, M. J., Fang, W. H., Papadopoulos, N., Jen, J., de la Chapelle, A., Kinzler, K. W., Vogelstein, B., & Modrich, P. (1993). Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell, 75(6), 1227-1236. https://doi.org/10.1016/0092-8674(93)90331-j Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. https://doi.org/10.1021/bi00216a029 Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., & Kraut, J. (1994). Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science, 264(5167), 1891-1903. https://www.ncbi.nlm.nih.gov/pubmed/7516580 Pham, P. T., Olson, M. W., McHenry, C. S., & Schaaper, R. M. (1998). The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem, 273(36), 23575-23584. https://doi.org/10.1074/jbc.273.36.23575 Saveson, C. J., & Lovett, S. T. (1997). Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics, 146(2), 457-470. https://doi.org/10.1093/genetics/146.2.457 Shinkai, A., & Loeb, L. A. (2001). In vivo mutagenesis by Escherichia coli DNA polymerase I. Ile(709) in motif A functions in base selection. J Biol Chem, 276(50), 46759-46764. https://doi.org/10.1074/jbc.M104780200 Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A, 90(14), 6498-6502. https://doi.org/10.1073/pnas.90.14.6498 Su, K. Y., Lin, L. I., Goodman, S. D., Yen, R. S., Wu, C. Y., Chang, W. C., Yang, Y. C., Cheng, W. C., & Fang, W. H. (2018). DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo. DNA Repair (Amst), 64, 59-67. https://doi.org/10.1016/j.dnarep.2018.02.005 Tikhomirova, A., Beletskaya, I. V., & Chalikian, T. V. (2006). Stability of DNA duplexes containing GG, CC, AA, and TT mismatches. Biochemistry, 45(35), 10563-10571. https://doi.org/10.1021/bi060304j Valle, L., Hernandez-Illan, E., Bellido, F., Aiza, G., Castillejo, A., Castillejo, M. I., Navarro, M., Segui, N., Vargas, G., Guarinos, C., Juarez, M., Sanjuan, X., Iglesias, S., Alenda, C., Egoavil, C., Segura, A., Juan, M. J., Rodriguez-Soler, M., Brunet, J., . . . Blanco, I. (2014). New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum Mol Genet, 23(13), 3506-3512. https://doi.org/10.1093/hmg/ddu058 Wagner, J., Etienne, H., Janel-Bintz, R., & Fuchs, R. P. (2002). Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. DNA Repair (Amst), 1(2), 159-167. https://doi.org/10.1016/s1568-7864(01)00012-x Zhou, X., Chen, X., An, Y., Lu, H., Wang, L., Xu, H., Tian, B., Zhao, Y., & Hua, Y. (2021). Biochemical characterization of a unique DNA polymerase A from the extreme radioresistant organism Deinococcus radiodurans. Biochimie, 185, 22-32. https://doi.org/10.1016/j.biochi.2021.02.014 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89802 | - |
dc.description.abstract | 在大腸桿菌中第一型DNA聚合酶為高忠誠性聚合酶,具有校對活性為3’端往5’端核酸外切酶,除了進行DNA複製外,也與許多DNA修復路徑相關,因此其校對活性相當重要。
先前時實驗室建立了MALDI-TOF MS的第一型DNA聚合酶校對活性試驗,結果發現當錯誤配對發生距離3’端1至4個核苷酸位置時可被第一型DNA聚合酶校對,發生距離3’端超過6個核苷酸位置時則無法被校對。至今仍未有報告DNA聚合酶校對活性之活體內試驗,以印證試管中實驗的生物學意義,因此本篇研究致力於建立細菌體內試驗的方法,以與DNA聚合酶體外校對試驗比對。 本篇研究以pBluescript II SK(+) phagemid載體製備在5’端帶有C:C標誌,以及3’有錯誤配對之G:T或C:C錯配含三個核苷酸之gap受質及C:C錯配之nick受質,將受質轉型至菌株NM522(polA WT)進行校對活性的評估,同時也以大腸桿菌KA796(polA+)及無3'→5'核酸外切酶活性菌株KA796D424A (polAexo D424A mutation)比對校對活性。 首先,以3’端第一個核苷酸為G:T錯配之三個核苷酸gap受質測定第一型DNA聚合酶錯誤配對校對能力,再由限制酶水解判讀校對結果,發現KA796(55.33%)與KA796D424A(49.33%)校對活性無顯著差異,懷疑為mismatch repair system(MMR)所干擾,因此將G:T錯配換成C:C錯配,以降低MMR影響。接著,以NM522、KA796及KA796D424A測定3’端第一個核苷酸為C:C錯誤配對之gap受質皆有高的背景值,C:C錯配結構會影響其周圍配對之穩定性造成strand loss增加,而校對活性結果NM522(51.33%)、KA796(52.67%)、KA796D424A (44%)無顯著差異,可能為第二型與第三型DNA聚合酶之干擾,因此設計nick受質以降低除了第一型DNA聚合酶以外的聚合酶干擾。以NM522測定3’端第一個核苷酸位置C:C錯配之nick受質,C:C錯配之nick受質(74%)較C:C錯配之gap受質(51.33%)顯示出較高的校對活性且有統計上的差異(p=0.008)以及較低的背景值,但仍因C:C結構於3’末端位置不利於DNA連接酶作用,造成引子股損失增加,卻只觀察到少數的無校對修復結果。而3’端第四個核苷酸位置C:C錯誤配對之nick受質於NM522結果發現無校對成功結果,其可能受到DNA連接酶之干擾,因此後續需將受質之5’端磷酸根去除,以避免受質在未受到DNA聚合酶反應前就被黏合。實驗也觀察到aberrant結果,可能為受質進行轉型作用引起SOS反應使DNA polymerase I*增加,因其在複製過程中較容易插入錯誤核苷酸造成。 本研究顯示於NM552結果中當錯誤配對位於3’端1、2、3個核苷酸位置時可被第一型DNA聚合酶校對,但校對比率呈下降趨勢(1:74%、2:64%、3:56.6%)。KA796與KA796D424A之結果比對發現,無3'→5'核酸外切酶活性菌株KA796D424A其校對比率下降,但仍有校對成功結果懷疑為proofreading in trans影響,為KA796D424A內其他具有核酸外切酶活性蛋白與第一型DNA聚合酶進行校對反應。因此,C:C錯配且去除5’端磷酸根之受質可使用於野生型菌株NM522進行後續研究生物體內第一型DNA聚合酶校對錯誤配對與否於3’端距離之臨界點與試管試驗結果是否相符,而於KA796與KA796D424A之校對活性比對則因仍無法排除proofreading in trans之干擾,需後續實驗進行改善。 | zh_TW |
dc.description.abstract | DNA polymerase I is a high-fidelity polymerase in Escherichia coli with 3’→5’proofreading activity. DNA Pol I plays important roles in DNA replication and various DNA repair pathways, and it is crucail in maintain gene stability.
We had established a MALDI-TOF MS based proofreading activity analysis for DNA polymerase I in vitro. The results revealed that mismatch within the primer-template junction about 1 to 4-nt from the primer 3’end provoked proofreading, mismatch at 6-nt away from the primer 3’terminus escaped from proofreading. To date, there have been no reports of in vivo proofreading assay for DNA polymerase to validate the biological significance for in vitro data. Thus, this study aims to establish a phagemid-base substrates for in vivo Pol I proofreading assay, moreover, to compared the in vitro proofreading assay results. In this study, synthetic oligonucleotide-cloned pBluescript II SK(+) phagemid containing C:C marker at 5’end substrates, with a 3-nucleotide gap containing G:T or C:C mismatch, or a nick containing C:C mismatch. For evaluating proofreading activity of Pol I, mismatched substrates were transformed into E.coli wild-type strain NM522(polA WT). The assay also performed in PolI proofreading proficient strain KA796(polA+) and PolI proofreading deficient strain KA796D424A(polAexo D424A mutation). First, the proofreading activity of DNA Pol I was measured by using 3-nucleotide gap containing G:T substrate. The proofreading activity showed no significant difference in strain KA796(55.33%) and KA796D424A(49.33%), suggesting that mismatch repair system (MMR) may interfere the proofreading assay. To minimize MMR interference, the G:T mismatch was replaced by a C:C mismatch. However, the C:C mismatch gapped substrates caused high strand loss background in strain NM522, KA796, and KA796D424A, possibly due to the structure destabilization by the C:C mismatch surrounding base pairing. Moreover, no significant difference in proofreading activity among NM522 (51.33%), KA796 (52.67%), and KA796D424A (44%), possibly due to interference by DNA polymerase II and III. We then designed a nicked substrates that would reduce interference by Pol II and Pol III. The proofreading activity in NM522 with the gapped C:C substrate (51.33%) and the nicked C:C substrate (74%) showed significant difference (p=0.008). Moreover, the quick ligation by DNA ligase to the nicked substrates with C:C mismatch at the fourth nucleotide from 3’ end showed no proofreading results. Therefore, removing the 5' phosphate group from the substrate is solution to prevent premature ligation before proofreading reaction This study demonstrates that proofreading activies of C:C errors from different positions at primer-template junction showed different efficiencies in the NM522, being highest 74% at 3'-end, 64% at penultimate site, and 56.7% at 3rd position from the primer 3' end and the proofreading rate decreases in KA796D424A. Therefore, the C:C mismatch nicked substrates lacking the 5' phosphate group is suitable for in vivo studies in strain NM522 to investigate the proofreading patch of the 3' end, which shown a comparable results to the in vitro experiments. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:10:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:10:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iv 圖目次 xi 表目次 xii 附錄目次 xiii 縮寫表 xiv 第一章 前言 1 1.1核酸複製校對活性的生物學意義 1 1.2核酸修復 1 1.3大腸桿菌DNA聚合酶 2 1.4研究動機 4 第二章 材料與方法 6 2.1菌株 6 2.2載體 6 2.3酵素 7 2.4人工合成寡核苷酸 7 2.5建構primer strand DNA 9 2.6建構template strand DNA 9 2.7大量製備雙股primer strand DNA 10 2.8製備單股環狀template strand DNA 11 2.9含有錯誤配對之受質的製備 12 2.10細菌體內聚合酶校對活性試驗 13 第三章 結果 14 3.1 pBSK質體製備 14 3.2 Primer strand DNA建構與製備 14 3.3 Template strand DNA建構與製備 14 3.4具錯誤配對之受質製備 15 3.5細菌體內聚合酶校對試驗 15 3.6含有gap受質於細菌體內轉型作用效率 16 3.7含有G:T錯誤配對之gap受質於細菌體內聚合酶校對試驗 16 3.8含有C:C錯誤配對之gap受質於細菌體內聚合酶校對試驗 17 3.9含有nick受質於細菌體內轉型作用效率 18 3.10含有C:C錯誤配對之nick受質於細菌體內聚合酶校對試驗 19 第四章 討論 23 4.1 含有G:T錯誤配對之gap受質 23 4.2 含有C:C錯誤配對之gap受質 24 4.3 含有C:C錯誤配對之nick受質 24 4.4錯誤配對受質於大腸桿菌體內試驗方法之建立 26 圖表 28 圖一:質體pBSK之製備 28 圖二:primer strand DNA及template strand DNA之建構 29 圖三:大量製備雙股primer strand DNA與製備環狀單股template strand DNA 30 圖四:具錯誤配對之受質製備 31 圖五:含有gap受質於細菌體內轉型作用效率 33 圖六:含有G:T錯誤配對之gap受質於細菌體內聚合酶校對試驗 34 圖七:含有C:C錯誤配對之gap受質於細菌體內聚合酶校對試驗 35 圖八:含有nick受質於細菌體內轉型作用效率 36 圖九:含有C:C錯誤配對之nick受質於細菌體內聚合酶校對試驗 37 表一:建構合成受質使用之DNA 40 表二:細菌體內校對活性試驗之受質 41 表三:大腸桿菌KA796內之gap受質轉型作用效率 42 表四:大腸桿菌KA796D424A內之gap受質轉型作用效率 43 表五:大腸桿菌KA796內於倒數第一個核苷酸位置為G:T錯誤配對之gap受質校對活性 44 表六:大腸桿菌大腸桿菌KA796D424A內於倒數第一個核苷酸位置為G:T錯誤配對之gap受質校對活性 45 表七:大腸桿菌NM522內於倒數第一個核苷酸位置為C:C錯誤配對之gap受質校對活性 46 表八:大腸桿菌KA796內於倒數第一個核苷酸位置為C:C錯誤配對之gap受質校對活性 47 表九:大腸桿菌KA796D424A內於倒數第一個核苷酸位置為C:C錯誤配對之gap受質校對活性 48 表十:大腸桿菌NM522之nick受質轉型作用效率 49 表十一:大腸桿菌NM522內於倒數第一個核苷酸位置為C:C錯誤配對之nick受質校對活性 50 表十二:大腸桿菌KA796D424A內於倒數第一個核苷酸位置為C:C錯誤配對之nick受質校對活性 51 表十三:大腸桿菌NM522內於倒數第三個核苷酸位置為C:C錯誤配對之nick受質校對活性 52 表十四:大腸桿菌KA796D424A內於倒數第三個核苷酸位置為C:C錯誤配對之nick受質校對活性 53 表十五:大腸桿菌NM522內於倒數第四個核苷酸位置為C:C錯誤配對之nick受質校對活性 54 表十六:大腸桿菌NM522內於倒數第二個核苷酸位置為C:C錯誤配對之nick受質校對活性 55 附錄 56 附錄一: Klenow fragment之結構 56 附錄二:第一型DNA聚合酶複製過程辨識錯誤配對及後續作用之示意圖 57 附錄三:第一型DNA聚合酶校對活性 58 附錄四:含有錯誤配對之受質 59 參考文獻 60 | - |
dc.language.iso | zh_TW | - |
dc.title | 大腸桿菌第一型DNA聚合酶校對活性活體試驗分析 | zh_TW |
dc.title | Analysis of Escherichia coli DNA polymerase I Proofreading activity by in vivo assay | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭靜穎;蘇剛毅;許濤;蔡芷季 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Ying Kuo;Kang-Yi Su;Todd Hsu;Jhih-Ji Tsai | en |
dc.subject.keyword | DNA聚合酶校對活性,第一型DNA聚合酶,DNA複製忠誠性,錯誤配對,聚合酶校對活性試驗,3'→5'核酸外切酶,細菌體內試驗, | zh_TW |
dc.subject.keyword | DNA polymerase proofreading activity,DNA polymerase I,DNA replication fidelity,mismatch,DNA polymerase proofreading assay,3'→5' exonuclease activity,in vivo assay, | en |
dc.relation.page | 64 | - |
dc.identifier.doi | 10.6342/NTU202303613 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-10 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。