請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89787
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑華 | zh_TW |
dc.contributor.advisor | Shu-Wha Lin | en |
dc.contributor.author | 張彥婷 | zh_TW |
dc.contributor.author | Yen-Ting Chang | en |
dc.date.accessioned | 2023-09-22T16:06:33Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 1. Mehta P, R.A., Hemophilia. 2022, StatPearls.
2. Zimmerman, B. and L.A. Valentino, Hemophilia: in review. Pediatr Rev, 2013. 34(7): p. 289-94; quiz 295. 3. Geraghty, S., et al., Practice patterns in haemophilia A therapy - global progress towards optimal care. Haemophilia, 2006. 12(1): p. 75-81. 4. Prof Flora Peyvandi, I.G., Guy Young, The past and future of haemophilia: diagnosis, treatments, and its complications. The Lancet, 2016. 388(10040): p. 187-197. 5. Kendre, G., et al., The target joint in Severe Hemophilia A. Pediatric Oncall, 2020. 17(1). 6. Roosendaal, G., et al., Iron deposits and catabolic properties of synovial tissue from patients with haemophilia. The Journal of Bone and Joint Surgery. British volume, 1998. 80-B(3): p. 540-545. 7. Liu, T., et al., NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2017. 2(1): p. 17023. 8. Zetterberg, E., et al., Angiogenesis is increased in advanced haemophilic joint disease and characterised by normal pericyte coverage. European Journal of Haematology, 2014. 92(3): p. 256-262. 9. Pulles, A.E., et al., Pathophysiology of hemophilic arthropathy and potential targets for therapy. Pharmacological Research, 2017. 115: p. 192-199. 10. LaPelusa A, D.H., Physiology, Hemostasis. 2023, StatPearls. 11. Palta, S., R. Saroa, and A. Palta, Overview of the coagulation system. Indian Journal of Anaesthesia, 2014. 58(5): p. 515-523. 12. Banach, L., et al., Synthesis and Hemostatic Activity of New Amide Derivatives. Molecules, 2022. 27(7): p. 2271. 13. Coppola, A., Treatment of hemophilia: a review of current advances and ongoing issues. Journal of Blood Medicine, 2010: p. 183. 14. Manco-Johnson, M.J., et al., Prophylaxis versus Episodic Treatment to Prevent Joint Disease in Boys with Severe Hemophilia. New England Journal of Medicine, 2007. 357(6): p. 535-544. 15. Srivastava, A., et al., Guidelines for the management of hemophilia. Haemophilia, 2013. 19(1): p. e1-e47. 16. Thornburg, C. and N. Duncan, Treatment adherence in hemophilia. Patient Preference and Adherence, 2017. Volume 11: p. 1677-1686. 17. Peyvandi, F., et al., A Randomized Trial of Factor VIII and Neutralizing Antibodies in Hemophilia A. New England Journal of Medicine, 2016. 374(21): p. 2054-2064. 18. Hay, C.R.M., D.M. DiMichele, and o.b.o.t.I.I.T. Study, The principal results of the International Immune Tolerance Study: a randomized dose comparison. Blood, 2012. 119(6): p. 1335-1344. 19. Johannes Oldenburg, J.S., Hans Hermann Brackmann, Clemens Müller-Reible, Rainer Schwaab, Edward Tuddenham, Environmental and genetic factors influencing inhibitor development. Seminars in Hematology, 2004. 41: p. Pages 82-88. 20. Bardi, E. and J. Astermark, Genetic risk factors for inhibitors in haemophilia A. European Journal of Haematology, 2015. 94: p. 7-10. 21. Witmer C, Y.G., Factor VIII inhibitors in hemophilia A: rationale and latest evidence. . Therapeutic Advances in Hematology, 2013: p. 59-72. 22. Maclean, P.S., et al., Treatment related factors and inhibitor development in children with severe haemophilia A. Haemophilia, 2011. 17(2): p. 282-287. 23. Ragni, M.V., et al., Risk factors for inhibitor formation in haemophilia: a prevalent case-control study. Haemophilia, 2009. 15(5): p. 1074-1082. 24. Gouw, S.C., et al., Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study. Blood, 2007. 109(11): p. 4648-4654. 25. Mannucci, P.M., M.E. Mancuso, and E. Santagostino, How we choose factor VIII to treat hemophilia. Blood, 2012. 119(18): p. 4108-4114. 26. Kitazawa, T., et al., A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nature Medicine, 2012. 18(10): p. 1570-1574. 27. Kitazawa, T. and M. Shima, Emicizumab, a humanized bispecific antibody to coagulation factors IXa and X with a factor VIIIa-cofactor activity. International Journal of Hematology, 2020. 111(1): p. 20-30. 28. Scott, L.J. and E.S. Kim, Emicizumab-kxwh: First Global Approval. Drugs, 2018. 78(2): p. 269-274. 29. Blair, H.A., Emicizumab: A Review in Haemophilia A. Drugs, 2019. 79(15): p. 1697-1707. 30. Callaghan, M.U., et al., Long-term outcomes with emicizumab prophylaxis for hemophilia A with or without FVIII inhibitors from the HAVEN 1-4 studies. Blood, 2021. 137(16): p. 2231-2242. 31. Lenting, P.J., C.V. Denis, and O.D. Christophe, Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII? Blood, 2017. 130(23): p. 2463-2468. 32. Nogami, K. and M. Shima, Current and future therapies for haemophilia—Beyond factor replacement therapies. British Journal of Haematology, 2023. 200(1): p. 23-34. 33. Jiménez‐Yuste, V., et al., Concomitant use of bypassing agents with emicizumab for people with haemophilia A and inhibitors undergoing surgery. Haemophilia, 2021. 27(4): p. 519-530. 34. Howard, M., et al., Evaluation of the Safety of Emicizumab Prophylaxis in Persons with Hemophilia A: An Updated Summary of Thrombotic Events and Thrombotic Microangiopathies. Blood, 2021. 138(Supplement 1): p. 3186-3186. 35. Young, G., Management of children with hemophilia A: How emicizumab has changed the landscape. Journal of Thrombosis and Haemostasis, 2021. 19(7): p. 1629-1637. 36. Den Uijl, I.E.M., et al., Clinical severity of haemophilia A: does the classification of the 1950s still stand? Haemophilia, 2011. 17(6): p. 849-853. 37. Chalmers, E.A., et al., Intracranial haemorrhage in children with inherited bleeding disorders in the UK 2003-2015: A national cohort study. Haemophilia, 2018. 24(4): p. 641-647. 38. Mahlangu, J., A. Iorio, and G. Kenet, Emicizumab state‐of‐the‐art update. Haemophilia, 2022. 28(S4): p. 103-110. 39. Ferrière, S., et al., A hemophilia A mouse model for the in vivo assessment of emicizumab function. Blood, 2020. 136(6): p. 740-748. 40. Bi, L., et al., Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nature Genetics, 1995. 10(1): p. 119-121. 41. Hakobyan, N., et al., Experimental haemophilic arthropathy in a mouse model of a massive haemarthrosis: gross, radiological and histological changes. Haemophilia, 2008. 14(4): p. 804-809. 42. Valentino, L.A., et al., Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency. Haemophilia, 2004. 10(3): p. 280-287. 43. Emeis, J.J., et al., A guide to murine coagulation factor structure, function, assays, and genetic alterations. Journal of Thrombosis and Haemostasis, 2007. 5(4): p. 670-679. 44. Prabhakar, S., et al., AAV9 transduction mediated by systemic delivery of vector via retro-orbital injection in newborn, neonatal and juvenile mice. Experimental Animals, 2021. 70(4): p. 450-458. 45. Wu, H., et al., Mechanism of the Immune Response to Human Factor VIII in Murine Hemophilia A. Thrombosis and Haemostasis, 2001. 85(01): p. 125-133. 46. Madoiwa, S., et al., Induction of immune tolerance by neonatal intravenous injection of human factor VIII in murine hemophilia A. Journal of Thrombosis and Haemostasis, 2004. 2(5): p. 754-762. 47. Dutta, S. and P. Sengupta, Men and mice: Relating their ages. Life Sciences, 2016. 152: p. 244-248. 48. Rydell-Törmänen, K. and J.R. Johnson, The Applicability of Mouse Models to the Study of Human Disease. 2019, Springer New York. p. 3-22. 49. Carcao, M., P. Moorehead, and D. Lillicrap, Chapter 135 - Hemophilia A and B, in Hematology (Seventh Edition), R. Hoffman, et al., Editors. 2018, Elsevier. p. 2001-2022. 50. Qadura, M., et al., Immunoglobulin isotypes and functional anti-FVIII antibodies in response to FVIII treatment in Balb/c and C57BL/6 haemophilia A mice. Haemophilia, 2011. 17(2): p. 288-295. 51. Chao, B.N., et al., Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene. Journal of Thrombosis and Haemostasis, 2016. 14(2): p. 346-355 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89787 | - |
dc.description.abstract | A型血友病是由凝血第八因子(FVIII)缺乏或功能障礙引起的先天性出血性遺傳疾病,嚴重型患者會出現自發性出血及關節積血等臨床症狀,必須終身接受治療以維持正常生活。然而,大約20-30%的患者會因注射第八因子治療後產生第八因子中和性抗體(FVIII neutralizing antibody)造成治療失效。近年來,隨著雙特異性單株抗體藥物”emicizumab”上市,大幅改善前述的治療困境。類似於第八因子的功能,emicizumab會透過橋接活化的第九因子(FIXa)和第十因子(FX),使止血功能恢復正常。目前臨床試驗已證明長期使用emicizumab的安全性及療效,但由於emicizumab無法辨識活化與非活化態因子,故只能達到15-20%的第八因子活性,因此患者遭遇急性出血時仍需補充第八因子。據文獻指出,患者出血時給予第八因子治療所誘發抗體的風險高於預防性投予,目前有一臨床試驗正進行收案,旨在評估新診斷未曾接受治療的患者(PUPs)給予emicizumab的同時也預防性投予第八因子,目的在於讓使用emicizumab之PUP,避免暴露於第八因子的時機是發生在出血或手術時,希望藉此減少誘發抗體之風險,然透過臨床試驗獲得數據恐需數年,本篇研究希望建立一小鼠模型來加速取得參考依據。
由於emicizumab會特異性結合人類第九及第十凝血因子,可以使用的動物模型有限,目前唯一被發表的小鼠模型只能用於短期觀察,因此,我利用腺相關病毒(AAV)載體使小鼠長期內源性的表現人類第九及第十因子,實驗室先前已具備攜帶第九因子的AAV載體(AAV-hFIX)。為了製備AAV-hFX,首先,利用反轉錄-聚合酶鏈反應(RT-PCR)方法,獲得第十因子互補DNA(cDNA),定序出第十因子基因片段後,進行建構表達第十因子之AAV-hFX質體,最後將AAV-hFIX及AAV-hFX注射於兩周大的血友病小鼠,並確認emicizumab可於此模型發揮效果,初步建立一個可用於emicizumab長期試驗的小鼠模型。此外,建立小鼠膝關節損傷模型,以此模擬患者急性出血狀態。將emicizumab測試實驗分為四組;第八因子預防性治療,FVIII需求性治療、合併emicizumab預防性與第八因子預防性治療,及合併emicizumab與FVIII需求性治療,比較不同治療策略對抗體產生風險的影響。結果觀察到,與單獨使用第八因子相比,用emicizumab合併第八因子,無論是第八因子預防性治療還是需求性治療,皆降低第八因子抗體的效價和發生率。此外,emicizumab合併第八因子預防性治療對第八因子抗體的誘發率低於emicizumab合併第八因子需求性治療。本研究顯示emicizumab合併第八因子治療可減少第八因子抗體產生,為臨床治療策略提供參考。另外,本研究建立的小鼠模型未來可用於初步評估emicizumab相關的臨床問題或測試其他新型雙特異性抗體藥物。 | zh_TW |
dc.description.abstract | Hemophilia A is a hereditary hemorrhagic disorder result from coagulation factor VIII(FVIII) protein dificiency or disfunction. Severe Hemophilia A patients, often present spontaneous bleeding and hemarthrosis, have to receive lifelong treatment to maintain a normal life. However, approximately 20~30% severe hemophilia A patients develop anti-FVIII neutralizing antibodies, termed FVIII inhibitors, which diminish the effect of a FVIII agent and rander the factor replacement therapy ineffective. Recently, with the launch of the bispecific antibody drug emicizumab, the aforementioned treatment dilemma has been greatly improved. Similar to the function of FVIIIa, emicizumab restores normal hemostasis by bridging factor IXa(FIXa) and factor X(FX). Current clinical trials have proven the safety and efficacy of long-term use of emicizumab, but as emicizumab cannot identify the active or inactive state of the factors, it can only achieve 15-20% of FVIII activity, so patients still need to supplement factor VIII when encountering acute bleeding. According to the literature, the risk of antibodies induced by factor VIII therapy is higher than that of prophylactic administration when patients are bleeding. A clinical trial is currently underway to evaluate the use of emicizumab in previously untreated patients (PUPs), and FVIII is also administered prophylactically. The purpose is to make PUPs that use emicizumab can avoid exposure to FVIII during bleeding or surgery, and reduce the risk of inducing antibodies. However, it often takes several years to obtain answers through clinical trials. This study aims to establish a mouse model to speed up the process of acquiring the reference basis.
Emicizumab specifically binds both human FIX and FX. Available animal models for testing its efficacies are very limited. The published mouse model can only be used for short-term observation. Hence, I use AAV gene delivery to generate mice that endogenously express human FIX and FX for long term. Our laboratory already has an AAV vector carrying factor IX(AAV-hFIX). To construct AAV-hFX, human FX cDNA was obtained by reverse transcription-PCR, and after DNA sequencing, subcloned into the AAV vector. Finally, both the AAV-hFIX and AAV-hFX was delivered to two-week-old hemophilia A mice, which have demonstrated efficatious for emicizumab function tests, and therefore can be used for long-term trials of emicizumab. Besides, a mouse knee joint injury model was established to simulate the acute bleeding state of hemophilia A patient. Four experimental groups are designed; FVIII prophylaxis or on-demand treatment, group A or B respectively; Emicizumab prophylaxis combimed with FVIII prophylaxis or with FVIII on-demand treatment, group C or D, respectively; to compare the impact of different treatment strategies on the incidence of FVIII inhibitor. As a result, it was observed that prophylactic treatment with emicizumab combined with FVIII, either prophylactic or on-demand treatment, can reduce the titer and incidence of FVIII inhibitors as compared with using FVIII alone. In addition, inhibitors elicited by emicizumab combined with FVIII prophylactic were reduced as compared with emicizumab plus FVIII on-demand. This study suggests that combination of emicizumab and FVIII treatment could reduce FVIII inhibitor induction, which can provide a reference for clinical therapeutic strategies. Also, the mouse model established in this study can be used in the future to initially evaluate clinical problems related to emicizumab or test other newly bispecific antibody drugs. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:06:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:06:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 III Abstract V 目錄 VII 圖目錄 IX 附錄 IX 縮寫表 X 第一章 緒論 1 1. A型血友病 1 2. 血友病關節病變(Hemophilic arthropathy) 1 3. 凝血第八因子(Coagulation Factor VIII)的角色 2 4. A型血友病治療概況 3 5. 第八因子中和性抗體產生的因素 4 6. 雙特異性抗體藥物 4 7. 雙特異性抗體藥物在臨床治療上的探討 5 8. 初診斷未經治療患者(Previously untreated patients, PUPs)的治療策略 6 9. 研究目的與動機 7 第二章 實驗材料與方法 8 1. 包含凝血第十因子DNA之AAV病毒載體製備及表現量測定 8 2. 動物模型建立與繁殖以及凝血功能測定 10 3. 膝損傷小鼠實驗模型建立 12 4. 測試emicizumab實驗分組及抗體效價測定 13 第三章 實驗結果 15 1. 完成攜帶凝血第十因子DNA之AAV病毒載體 15 2. 建立可用於評估emicizumab功能之小鼠模型 15 3. 膝損傷小鼠實驗模型結果評估 16 4. 合併emicizumab與FVIII治療結果 17 第四章 討論 18 1. 人類第九及第十因子於此小鼠模型的表現情形 18 2. 以膝損傷小鼠模型模擬人類患者之適切性 19 3. 以小鼠模型評估新治療策略的可行性 19 4. 小鼠模型與臨床患者間的差異 20 5. 偵測抗體效價的準確性 21 第五章 結論與未來展望 22 參考文獻 23 圖 28 附錄 39 | - |
dc.language.iso | zh_TW | - |
dc.title | 建立表達人類第九及第十因子之A型血友病小鼠模型作為新興雙特異性抗體藥物之測試平台 | zh_TW |
dc.title | Hemophilia A murine models expressing human factor IX and factor X for testing the efficacy of factor VIII mimicking bispecific antibodies | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉兆蓮;陳淑惠;林亮音;周聖傑 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Lien Liu;Shu-Hui Chen;Liang-Yin Lin;Sheng-Jie Zhou | en |
dc.subject.keyword | A型血友病,第八因子中和性抗體,雙特異性單株抗體,Emicizumab,小鼠模型, | zh_TW |
dc.subject.keyword | Hemophilia A,anti-FVIII neutralizing antibody,bispecific monoclonal antibody,Emicizumab,mouse model, | en |
dc.relation.page | 40 | - |
dc.identifier.doi | 10.6342/NTU202303826 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
dc.date.embargo-lift | 2023-08-08 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。