請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏 | zh_TW |
| dc.contributor.advisor | Woei-horng Fang | en |
| dc.contributor.author | 徐屾玨 | zh_TW |
| dc.contributor.author | Chen-Jyue Hsu | en |
| dc.date.accessioned | 2023-09-20T16:20:27Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Allison, Lizabeth A. (2007). Fundamental Molecular Biology. Hoboken, NJ: Wiley- Blackwell.
Aoude, L. G., Heitzer, E., Johansson, P., Gartside, M., Wadt, K., Pritchard, A. L., Palmer, J. M., Symmons, J., Gerdes, A. M., Montgomery, G. W., Martin, N. G., Tomlinson, I., Kearsey, S., & Hayward, N. K. (2015). POLE mutations in families predisposed to cutaneous melanoma. Familial Cancer, 14(4), 621-628. Astatke, M., Grindley, N. D., & Joyce, C. M. (1998). How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. J Mol Biol, 278(1), 147-165. Bebenek, K., Joyce, C. M., Fitzgerald, M. P., & Kunkel, T. A. (1990). The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem, 265(23), 13878-13887. Beese, L. S., Derbyshire, V., & Steitz, T. A. (1993). Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science, 260(5106), 352-355. Brautigam, C. A., Sun, S., Piccirilli, J. A., & Steitz, T. A. (1999). Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Biochemistry, 38(2), 696-704. Chang, H. L., Su, K. Y., Goodman, S. D., Chou, N. A., Lin, K. C., Cheng, W. C., Lin, L. I., Chang, S. Y., & Fang, W. H. (2020). Proofreading of single nucleotide insertion/deletion replication errors analyzed by MALDI-TOF mass spectrometry assay. DNA Repair (Amst), 88, 102810. Chikh, L., Tessier, M., & Fradet, A. (2007). NMR and MALDI-TOF MS study of side reactions in hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propanoic acid. Polymer, 48(7), 1884-1892. Chikh, L., Tessier, M., & Fradet, A. (2008). Polydispersity of Hyperbranched Polyesters Based on 2,2-Bis(hydroxymethyl)propanoic Acid: SEC/MALDI−TOF MS and 13C NMR/Kinetic-Recursive Probability Analysis. Macromolecules, 41. Cowart, M., Gibson, K. J., Allen, D. J., & Benkovic, S. J. (1989). DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry, 28(5), 1975-1983. Dahlberg, M. E., & Benkovic, S. J. (1991). Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. Biochemistry, 30(20), 4835-4843. Dangerfield, T. L., & Johnson, K. A. (2023). Kinetics of DNA strand transfer between polymerase and proofreading exonuclease active sites regulates error correction during high-fidelity replication. J Biol Chem, 299(1), 102744. Escarceller, M., Hicks, J., Gudmundsson, G., Trump, G., Touati, D., Lovett, S., Foster, P. L., McEntee, K., & Goodman, M. F. (1994). Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol, 176(20), 6221-6228. Federley, R. G., & Romano, L. J. (2010). DNA polymerase: structural homology, conformational dynamics, and the effects of carcinogenic DNA adducts. J Nucleic Acids, 2010. Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2012). DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev, 36(6), 1105-1121. Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R., & Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci U S A, 85(23), 8924-8928. Fukuyama, Y., Nakaya, S., Yamazaki, Y., & Tanaka, K. (2008). Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Anal Chem, 80(6), 2171-2179. Gade, C. R., Dixit, M., & Sharma, N. K. (2016). Dideoxy nucleoside triphosphate (ddNTP) analogues: Synthesis and polymerase substrate activities of pyrrolidinyl nucleoside triphosphates (prNTPs). Bioorg Med Chem, 24(18), 4016-4022. Garcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. CRC Crit Rev Plant Sci, 26(2), 105-122. Goodman, M. F., Creighton, S., Bloom, L. B., & Petruska, J. (1993). Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol, 28(2), 83-126. Green, M. R., & Sambrook, J. (2020). E. coli DNA Polymerase I and the Klenow Fragment. Cold Spring Harb Protoc, 2020(5), 100743. Griffin, T. J., Hall, J. G., Prudent, J. R., & Smith, L. M. (1999). Direct genetic analysis by matrix-assisted laser desorption/ionization mass spectrometry. Proc Natl Acad Sci U S A, 96(11), 6301-6306. Gut, I. G. (2004). DNA analysis by MALDI-TOF mass spectrometry. Hum Mutat, 23(5), 437-441. Hrabák, J. (2015). Detection of carbapenemases using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) meropenem hydrolysis assay. Methods Mol Biol, 1237, 91-96. Huberty, M. C., Vath, J. E., Yu, W., & Martin, S. A. (1993). Site-specific carbohydrate identification in recombinant proteins using MALD-TOF MS. Anal Chem, 65(20), 2791-2800. Johnson, K. A. (1993). Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem, 62, 685-713. Joyce, C. M., & Steitz, T. A. (1987). DNA polymerase I: from crystal structure to function via genetics. Trends in Biochemical Sciences, 12, 288-292. Kafka, A. P., Kleffmann, T., Rades, T., & McDowell, A. (2011). The application of MALDI TOF MS in biopharmaceutical research. Int J Pharm, 417(1-2), 70-82. Kirpekar, F., Berkenkamp, S., & Hillenkamp, F. (1999). Detection of double-stranded DNA by IR- and UV-MALDI mass spectrometry. Anal Chem, 71(13), 2334-2339. Klenow, H., & Overgaard-Hansen, K. (1970). Proteolytic cleavage of DNA polymerase from Escherichia Coli B into an exonuclease unit and a polymerase unit. FEBS Lett, 6(1), 25-27. Kolodner, R. D. (1995). Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci, 20(10), 397-401. Kool, E. T. (2002). Active site tightness and substrate fit in DNA replication. Annu Rev Biochem, 71, 191-219. Kunkel, T. A. (2004). DNA replication fidelity. J Biol Chem, 279(17), 16895-16898. Kunkel, T. A., & Bebenek, K. (2000). DNA replication fidelity. Annu Rev Biochem, 69, 497-529. Kunz, C., Saito, Y., & Schär, P. (2009). DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci, 66(6), 1021-1038. Lehman, I. R., Bessman, M. J., Simms, E. S., & Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem, 233(1), 163-170. Li, D., Yi, J., Han, G., & Qiao, L. (2022). MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas Sci Au, 2(5), 385-404. Li, G. M. (2008). Mechanisms and functions of DNA mismatch repair. Cell Res, 18(1), 85-98. Loeb, L. A., & Kunkel, T. A. (1982). Fidelity of DNA synthesis. Annu Rev Biochem, 51, 429-457. Lovett, S. T. (2011). The DNA Exonucleases of Escherichia coli. EcoSal Plus, 4(2). Modrich, P. (1987). DNA mismatch correction. Annu Rev Biochem, 56, 435-466. Modrich, P. (2016). Mechanisms in E. coli and Human Mismatch Repair (Nobel Lecture). Angew Chem Int Ed Engl, 55(30), 8490-8501. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., & Steitz, T. A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature, 313(6005), 762-766. Owczarzy, R., You, Y., Moreira, B. G., Manthey, J. A., Huang, L., Behlke, M. A., & Walder, J. A. (2004). Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry, 43(12), 3537-3554. Patel, P. H., Suzuki, M., Adman, E., Shinkai, A., & Loeb, L. A. (2001). Prokaryotic DNA polymerase I: evolution, structure, and "base flipping" mechanism for nucleotide selection. J Mol Biol, 308(5), 823-837. Petruska, J., Goodman, M. F., Boosalis, M. S., Sowers, L. C., Cheong, C., & Tinoco, I., Jr. (1988). Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci U S A, 85(17), 6252-6256. Rangarajan, S., Woodgate, R., & Goodman, M. F. (1999). A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli. Proc Natl Acad Sci U S A, 96(16), 9224-9229. Renkonen, E., Zhang, Y., Lohi, H., Salovaara, R., Abdel-Rahman, W. M., Nilbert, M., Aittomaki, K., Jarvinen, H. J., Mecklin, J. P., Lindblom, A., & Peltomaki, P. (2003). Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol, 21(19), 3629-3637. Rossetti, G., Dans, P. D., Gomez-Pinto, I., Ivani, I., Gonzalez, C., & Orozco, M. (2015). The structural impact of DNA mismatches. Nucleic Acids Res, 43(8), 4309-4321. Schaaper, R. M. (1993). Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem, 268(32), 23762-23765. Sekiya, S., Wada, Y., & Tanaka, K. (2005). Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem, 77(15), 4962-4968. Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P. E., Rolain, J. M., & Raoult, D. (2009). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis, 49(4), 543-551. Sim, K., Shaw, A. G., Randell, P., Cox, M. J., McClure, Z. E., Li, M. S., Haddad, M., Langford, P. R., Cookson, W. O., Moffatt, M. F., & Kroll, J. S. (2015). Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin Infect Dis, 60(3), 389-397. Steitz, T. A. (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem, 274(25), 17395-17398. Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A, 90(14), 6498-6502. Su, K.-Y., Lai, H.-M., Goodman, S. D., Hu, W.-Y., Cheng, W.-C., Lin, L.-I., Yang, Y.-C., & Fang, W.-h. (2018). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair, 61, 63-75. Su, K. Y., Goodman, S. D., Lai, H. M., Yen, R. S., Hu, W. Y., Cheng, W. C., Lin, L. I., Yang, Y. C., & Fang, W. H. (2018). Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis. J Vis Exp(136). Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A, 92(14), 6339-6343. Tan, Z. J., & Chen, S. J. (2006). Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys J, 90(4), 1175-1190. Vaisman, A., McDonald, J. P., & Woodgate, R. (2012). Translesion DNA Synthesis. EcoSal Plus, 5(1). Wang, J., & Konigsberg, W. H. (2022). Two-Metal-Ion Catalysis: Inhibition of DNA Polymerase Activity by a Third Divalent Metal Ion. Front Mol Biosci, 9, 824794. Wildenberg, J., & Meselson, M. (1975). Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci U S A, 72(6), 2202-2206. Wu, K. J., & Odom, R. W. (1998). Characterizing synthetic polymers by MALDI MS. Anal Chem, 70(13), 456a-461a. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89778 | - |
| dc.description.abstract | 互補的核苷酸互相配對時,便被稱為 DNA 誤配(DNAmismatch)。生物體中,DNA 誤配主要 DNA 聚合酶的校正(proofread)以及誤配修補系統(mismatch repair, MMR)進行修復,其中,DNA 聚合酶的校正主要針對正在進行複製的 DNA 進行。
本實驗室過去曾研究 Klenow fragment(KF)對於誤配核苷酸與插入/缺失錯誤(insertion/ deletion error, indel error)的校正活性,發現 KF 對於自引子股 3’端數來 1至 4 個位置的的異常核苷酸有著較高的校正活性。實驗室據此提出了假說,認為KF 能夠與距離 DNA 引子股 3’端 4 個核苷酸直接接觸,因此在這個範圍內的異常核苷酸能夠受到較強的校正作用。 在本篇研究中,我們首先使用 KF 與在引子 3’端數來 1 至 7 個位置帶有單一誤配核苷酸的 DNA 進行反應並以 MALDI-TOF MS 分析,發現 KF 對於自引子股3’端的 1 至 3 個位置的誤配核苷酸有著較高的校正活性,4 號位置的校正活性較低,5 至 7 號位置則無校正活性而進行引子延伸。接著,我們測試帶有兩個誤配核苷酸的 DNA 的校正活性,發現當兩個誤配核苷酸包含彼此在內相距 4 個核苷酸以內時若有一個誤配核苷酸位於可被校正的範圍內,另一個誤配核苷酸會一併進行校正。另外也發現誤配序列的種類會影響誤配核苷酸共同受到校正的活性。 為了能夠進一步了解 KF 進行校正反應的過程,我們利用含有兩個誤配核苷酸的 DNA 與 KF 反應並進行 time course 實驗,在實驗中,我們觀察到了 KF 中3’→5 外切酶(3’→5’ exonuclease)的非連續性(non-processive)作用。最後,結合本篇研究的實驗結果,我們對 KF 的校正反應機制提出了以下模型: 當 KF 對 DNA進行校正時,將引子股 3’端送往 3’→5’外切酶活性位 (3’→5’ exonuclease site) 並且水解一個核苷酸後送回聚合酶活性位 (polymerase site),若 DNA 上仍有異常序列,便會重複以上步驟,直到異常序列受到水解為止。 | zh_TW |
| dc.description.abstract | DNA mismatch is defined as the misincorporation of nucleotide. In livingorganism, DNA mismatch could be corrected by either DNA proofreading or mismatchrepair (MMR).
In previous research devoted by our laboratory, the proofreading activity of Klenow fragment(KF) for mismatch error and insertion/deletion error(indel error) was studied. The results showed relatively strong proofreading activity for errors within 4 nucleotides from primer 3’ end in both experiments. Thus, our laboratory proposed a hypothesis that KF may physically contact with 4 nucleotides from primer 3’ end, therefore preform strong proofreading ability within such range. In this study, proofreading activity of KF for single mismatched nucleotide was examined. The data revealed that polymerase showed strong proofreading activity for mismatched nucleotide within 3 nucleotides distant from primer 3’ end. Less proofreading activity to the fourth nucleotide from primer 3’ end. As for those whose distance from primer 3’ end is over 5 nucleotides, KF failed to correct the mismatched nucleotide. After that, proofreading efficiency of KF for DNA which contains two mismatches was tested. The data suggests that if the distance between two mismatches is beyond 3 nucleotides, KF would tend to correct both mismatched nucleotides as long as one of them could be recognized by the polymerase. Also, the proofreading activity for the two mismatched base pairs would also be influenced by the type of mismatches. To investigate the process of proofreading activity carried out by KF, time course experiment of a double-mismatched DNA proofread by KF were practiced. According to the result, we found the non-processive activity of KF 3’→5 exonuclease. Finally, based on the experimental result obtained in this study, we proposed a model of KF proofreading process. Upon recognizing errors on the DNA, the single stranded primer would be transferred to the 3’→5 exonuclease site, after that, a nucleotide would be hydrolyzed. The primer would then be transferred back into polymerization site, there, KF would determine whether the error has been removed. If not, the primer would be transferred to the 3’→5 exonuclease site once again, and the process would be repeated once and again until the error sequence was corrected. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:20:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:20:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝................................................................................................................................................ I
中文摘要....................................................................................................................................... II Abstract ........................................................................................................................................IV 圖目次........................................................................................................................................VIII 表目次.......................................................................................................................................... IX 附錄目次....................................................................................................................................... X 縮寫表.......................................................................................................................................... XI 第一章 研究背景......................................................................................................................... 1 1.1 第一型 DNA 聚合酶(DNA polymerase I, Pol I)........................................................ 1 1.2 DNA 誤配(DNA mismatch)........................................................................................ 3 1.3 基質協助雷射去吸附離子化-飛行時間質譜儀(Matrix-Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry, MALDI-TOF MS) ......................................... 5 1.4 研究動機 ..................................................................................................................... 7 第二章 材料與方法................................................................................................................... 10 2.1 DNA 序列......................................................................................................................... 10 2.2 試劑與酵素...................................................................................................................... 11 2.2.1 酵素........................................................................................................................... 11 2.2.2 試劑........................................................................................................................... 11 2.2.3 純化套組.................................................................................................................... 11 2.4 Klenow fragment 校正能力試驗...................................................................................... 11 2.5 Klenow fragment 校正 time course 試驗 ......................................................................... 12 2.6 樣品去鹽純化................................................................................................................... 12 2.7 基質協助雷射去吸附離子化-飛行時間質譜儀分析 MALDI-TOF MS....................... 13 2.8 產物百分比計算.............................................................................................................. 13 2.9 純化套組測試.................................................................................................................. 14 第三章 結果............................................................................................................................... 15 VII 3.1 Klenow fragment 對單一核苷酸誤配之校正能力分析.................................................. 15 3.2 引子股 3’近端誤配對遠端誤配核苷酸校正活性之影響.............................................. 15 3.3 雙誤配核苷酸間距對其共同受到校正活性之影響................................................ 17 3.4 誤配鹼基對於雙誤配核苷酸共同校正活性之影響...................................................... 18 3.5 DM47 校正反應中間產物分析 ...................................................................................... 19 3.6 離子濃度對於 Klenow fragment 校正活性之影響........................................................ 20 3.7 EasyPure PCR/Gel Extraction Kit 純化能力分析............................................................ 20 第四章 討論............................................................................................................................... 22 附錄............................................................................................................................................. 48 參考文獻..................................................................................................................................... 53 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 核酸修復 | zh_TW |
| dc.subject | DNA 誤配 | zh_TW |
| dc.subject | MALDI-TOF MS | zh_TW |
| dc.subject | 校正反應 | zh_TW |
| dc.subject | Klenow fragment 校正活性 | zh_TW |
| dc.subject | Klenow fragment | zh_TW |
| dc.subject | DNA mismatch | en |
| dc.subject | DNA repair | en |
| dc.subject | MALDI-TOF | en |
| dc.subject | Proofreading activity | en |
| dc.subject | Klenow fragment | en |
| dc.title | 第一型 DNA 聚合酶校正機制之研究分析 | zh_TW |
| dc.title | Mechanistic analysis of DNA Polymerase I proofreading activity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許濤;蔡芷季;蘇剛毅;郭靜穎 | zh_TW |
| dc.contributor.oralexamcommittee | Todd Hsu;Jyy-Jih Tsai-Wu ;Kang-Yi Su;Ching-Ying Kuo | en |
| dc.subject.keyword | DNA 誤配,MALDI-TOF MS,校正反應,Klenow fragment 校正活性,核酸修復,Klenow fragment, | zh_TW |
| dc.subject.keyword | Klenow fragment,DNA mismatch,Proofreading activity,MALDI-TOF,DNA repair, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202303596 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
