請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89774完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳恩賜 | zh_TW |
| dc.contributor.advisor | Joshua Oon Soo Goh | en |
| dc.contributor.author | 黃麟涵 | zh_TW |
| dc.contributor.author | Lin-Han Huang | en |
| dc.date.accessioned | 2023-09-20T16:19:25Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-13 | - |
| dc.identifier.citation | Barth, M., Breuer, F., Koopmans, P. J., Norris, D. G., & Poser, B. A. (2016). Simultaneous multislice (SMS) imaging techniques. Magnetic resonance in medicine, 75 (1), 63-81, https://doi.org/10.1002/mrm.25897
Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited. The Neuroscientist, 23(5), 499-516. https://doi.org/10.1177/1073858416667720Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042 Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10, 186–198. doi: 10.1038/nrn2575 Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature reviews neuroscience, 13(5), 336-349. doi: 10.1038/nrn3214Camara, E., Rodriguez-Fornells, A., & Münte, T. F. (2009). Functional connectivity of reward processing in the brain. Frontiers in human neuroscience, 19. doi: 10.3389/neuro.09.019.2008 Cañete-Massé, C., Carbó-Carreté, M., Peró-Cebollero, M., Cui, S. X., Yan, C. G., & Guàrdia-Olmos, J.(2023). Abnormal degree centrality and functional connectivity in Down syndrome: A resting-state fMRI study. International Journal of Clinical and Health Psychology, 23(1), 100341. Chen, C.C., Lee, C.Y., Gutchess, A., Mair, R. & Goh, J.O.S. (2020) Cross-site multiband fMRI signal comparison for cross-cultural neurocognitive studies. Cognitive Neuroscience Society Conference 2020. Chiang, S., Cassese, A., Guindani, M., Vannucci, M., Yeh, H. J., Haneef, Z., & Stern, J. M. (2016) Time-dependence of graph theory metrics in functional connectivity analysis. NeuroImage, 125, 601-615. Cousins, S. D. (1989). Culture and self-perception in Japan and the United States. Journal of personality and social psychology, 56(1), 124. https://doi.org/10.1037/002 23514.56.1.124 de Greck, M., Shi, Z., Wang, G., Zuo, X., Yang, X., Wang, X., ... & Han, S. (2012). Culture modulates brain activity during empathy with anger.NeuroImage, 59(3), 28- 71-2882. https://doi.org/10.1016/j.neuroimage.2011.09.052 Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. frontiers in Neuroscience, 13, 585. https://doi.org/10.3389/fnins.2019.00585 Feinberg, D. A., & Setsompop, K. (2013). Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. Journal of magnetic resonance, 229, 90-100. http://doi.org/10.1016/j.jmr.2013.02.002 Fornito, A., Zalesky A., & Bullmore E. (2016). Chapter 5: Centrality and Hubs. Fundamentals of Brain Network Analysis, 137-161. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience, 19. https://doi.org/10.3389/fnsys.2010.00019 Friston, K.J. (1994), Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp., 2, 56-78. https://doi.org/10.1002/hbm.460020107 Friston K. J. (2011). Functional and effective connectivity: a review. Brain connectivity, 1(1), 13–36. https://doi.org/10.1089/brain.2011.0008 Ginestet, C. E., & Simmons, A. (2011). Statistical parametric network analysis of functional connectivity dynamics during a working memory task. Neuroimage, 55(2), 688-704. https://doi.org/10.1016/j.neuroimage.2010.11.030 Goh, J. O., Chee, M. W., Tan, J. C., Venkatraman, V., Hebrank, A., Leshikar, E. D., ... Park, D. C. (2007). Age and culture modulate object processing and object—scene binding in the ventral visual area. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 44-52. https://doi.org/10.3758/CABN.7.1.44 Goh, J. O., Leshikar, E. D., Sutton, B. P., Tan, J. C., Sim, S. K., Hebrank, A. C., & Park, D. C. (2010). Culture differences in neural processing of faces and houses in the ventral visual cortex. Social Cognitive and Affective Neuroscience, 5(2-3), 227-235. doi: 10.1093/scan/nsq060 Goh, J. O., Hebrank, A. C., Sutton, B. P., Chee, M. W., Sim, S. K., & Park, D. C. (2013). Culture-related differences in default network activity during visuo-spatial judgements. Social cognitive and affective neuroscience, 8(2), 134-142.https://doi.org/10.1093/scan/nsr077 Hofstede, G. H. (1980). Culture’s consequences: international differences in work-related values. Beverly Hills, CA: Sage Publications. Hofstede, G. H. (2001). Culture’s Consequences: Comparing Values, Behaviors, Institutions, and Organizations Across Nations, Second Edition. Beverly Hills, CA: Sage Publications. Hofstede, G., Hofstede, G. J. & Minkov, M. (2010) Cultures and organizations: Software of the mind (3rd ed.). McGraw-Hill. Hyde, L. W., Tompson, S., Creswell, J. D., & Falk, E. B. (2015). Cultural neuroscience: New directions as the field matures: What do cultural neuroscience findings mean ?. Culture and Brain, 3, 75-92. https://doi.org/10.1007/s40167-014-0024-6 Hyon, R., Youm, Y., Kim, J., Chey, J., Kwak, S., & Parkinson, C. (2020). Similarity in functional brain connectivity at rest predicts interpersonal closeness in the social- network of an entire village. Proceedings of the National Academy of Sciences,117(52), 33149-33160. https://doi.org/10.1073/pnas.2013606117 Ji, L. J., Zhang, Z., & Nisbett, R. E. (2004). Is it culture or is it language? Examination of language effects in cross-cultural research on categorization. Journal of personality and social psychology, 87(1), 57. Jiang, C., Varnum, M. E., Hou, Y., & Han, S. (2014). Distinct effects of self-construal priming on empathic neural responses in Chinese and Westerners. Social neuroscience, 9(2), 130-138. https://doi.org/10.1080/17470919.2013.867899 Kitayama, S., & Huff, S. (2015). Cultural neuroscience: Connecting culture, brain, and genes. Emerging trends in the social and behavioral sciences, 1-16. Kitayama, S., Markus, H., Tummala, P., Kurokawa, M., & Kato, K. (1990). Culture and self-cognition. Unpublished manuscript. Kitayama, S., & Park, J. (2010). Cultural neuroscience of the self: Understanding the social grounding of the brain. Social cognitive and affective neuroscience, 5(2-3), 111-129. https://doi.org/10.1093/scan/nsq052 Kitayama, S., & Uskul, A. K. (2011). Culture, mind, and the brain: Current evidence and future directions. Annual review of psychology, 62, 419-449. https://doi.org/10.1146/annurev-psych-120709-145357 Koshino, H., Carpenter, P. A., Minshew, N. J., Cherkassky, V. L., Keller, T. A., & Just, M. A. (2005). Functional connectivity in an fMRI working memory task in high-functioning autism. NeuroImage, 24(3), 810–821.doi: 10.1016/j.neuroimage.200-4.09.028 Kuhn, M. H., & McPartland, T. S. (1954). An Empirical Investigation of Self-Attitudes. American Sociological Review, 19(1), 68–76. https://doi.org/10.2307/2088175 Lee, C. Y., Chen, C. C., Mair, R. W., Gutchess, A., & Goh, J. O. S. (2021). Culture-related differences in the neural processing of probability during mixed lottery value-based decision-making. Biological psychology, 166, 108209. https://doi.org/10 .1016/j.biopsycho.2021.108209 Lin, L. C., & Telzer, E. H. (2017). An introduction to cultural neuroscience. The handbook of culture and biology, 397-420. doi: 10.1002/9781119181361.ch16 Logan, R. F. (1986). The alphabet effect. New York: Morrow Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D.,... & Turner, R. (2010). Eigenvector centrality mapping for analyzing connectivity-patterns in fMRI data of the human brain. PloS one, 5 (4), e10232. Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological review, 98(2), 224. https://doi.org/10.37/0033-295X.98.2.224 Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: holistic versus analytic perception. Trends in cognitive sciences, 9(10), 467-473. https://doi.org/10.1016/j.tics.2005.08.004 Norenzayan, A., Smith, E. E., Kim, B. J., & Nisbett, R. E. (2002). Cultural preferences for formal versus intuitive reasoning. Cognitive science,26(5), 653-684. http://doi.org/10.1207/s15516709cog2605_4 Pae, H. K. (2020). The East and the West. Script Effects as the Hidden Drive of the Mind, Cognition, and Culture, 107-134. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the national academy of sciences, 98(2), 676-682. https://doi.org/10.1073/pnas.98.2.676 Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. Developmental Cognitive- Neuroscience, 19, 58-69. https://doi.org/10.1016/j.dcn.2016.02.002 Russell, M. J., Masuda, T., Hioki, K., & Singhal, A. (2019). Culture and neuroscience: How Japanese and European Canadians process social context in close and acquaintance relationships. Social Neuroscience, 14(4), 484-498. https://doi.org/10.1080/17470919.2018.1511471 Schaefer, A., Burmann, I., Regenthal, R., Arélin, K., Barth, C., Pampel, A., ... & Sacher, J. (2014). Serotonergic modulation of intrinsic functional connectivity. Current Biology, 24(19), 2314-2318. Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral cortex, 28 (9), 3095–3114. https://doi.org/10.1093/cercor/bhx179 Sutton, B.*, Goh, J., Hebrank, A., Welsh, R. C., Chee, M. W. L., Park, D., (2008).Investigation and validation of intersite fMRI studies using the same imaging hardware. Journal of Magnetic Resonance Imaging, 28(1), 21-28. van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European neuropsychopharmacology,20(8),519-534. https://doi.org/10.1016/j.euroneuro.2010.03.008 van Duinkerken, E., Schoonheim, M. M., IJzerman, R. G., Moll, A. C., Landeira‐Fernandez, J., Klein, M., ... & Wink, A. M. (2017). Altered eigenvector centrality is related to local resting‐state network functional connectivity in patients with longstanding type 1 diabetes mellitus. Human Brain Mapping, 38(7), 3623-3636. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. Whorf, B. L. (1956). Language, thought, and reality. Cambridge, MA: Technology Press of MIT. Zhang, D., and Raichle, M. E. (2010). Disease and the brain’s dark energy. Nat. Rev. Neurol. 6, 15–28. https://doi.org/10.1038/nrneurol.2009.198 Zhang, W., Hung, I. T., Jackson, J. D., Tai, T. L., Goh, J. O. S., & Gutchess, A. (2020). Influence of culture and age on the self-reference effect. Aging, Neuropsychology, and Cognition, 27(3), 370-384. https://doi.org/10.1080/13825585.2019.1620913 Zhang, W., Andrews-Hanna, J. R., Mair, R. W., Goh, J. O. S., & Gutchess, A. (2022). Functional connectivity with medial temporal regions differs across cultures during post-encoding rest. Cognitive, Affective, & Behavioral Neuroscience, 22(6), 1334-1348. https://doi.org/10.3758/s13415-022-01027-7 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89774 | - |
| dc.description.abstract | 越來越多的研究發現大腦結構和功能存在與心理差異相對應的跨文化差異。 具體而言,東亞與西方各自的社會文化環境被認為影響了東亞族群和西方族群的「整體導向處理風格」與「分析導向處理風格」的神經機制。 然而,在大腦靜息狀態功能連接 (rsFC) 中是否存在與文化相關的差異仍有待探究。 在這項研究中,我們分析了 49 名台灣人(24 名女性,平均 ( SD ) 年齡 = 23.18(2.32))和 45 名美國人(24名女性,平均(SD)年齡=21.60(3.33))樣本的度中心性(degree centrality)結果,即每個節點 (node) 與其他節點的連接強度。樣本來源為受試者於各自所在地磁振造影中心的3T 西門子 PRISMA 掃描儀(相同型號)中接受靜息態功能 MRI 的影像採樣。我們發現,在全腦單變量對比結果中,並沒有存在美國人和台灣人之間不同的體素度中心性(voxel-wise degree centrality)。然而,在感興趣區(Region of Interest, ROI) 的度中心性 t 值分佈評估中顯示,美國人在 預設 (DMN) 、控制和邊緣 (Limbic) 網絡中整體較高的幅度集中在數量較少的體素 ,而台灣人在這些大腦區域的分佈較大,幅度較低。我們推測這些發現為特定文化資訊處理方式相對應的基線大腦功能連接性差異提供了有限的支持。西方分析思考方式強調一次保持一種具有主導性的大腦功能狀態,從而導致形成與其他區域具有單一更強共振的神經網絡中樞 (hubs)。相較下,東亞整體思考風格強調特定時間範圍大腦狀態之間的聯繫,從而導致大腦中更多的分佈式中樞和非同步活動。 | zh_TW |
| dc.description.abstract | An increasing number of studies demonstrate the presence of cross-cultural differences in brain structure and function that correspond to psychological differences. Specifically, neural correlates of holistic vs. analytic processing styles in East Asians and Westerners, respectively, are thought to reflect the influence of the respective sociocultural environments. Nevertheless, whether culture-related differences are present in brain resting-state functional connectivity (rsFC) remains unclear. In this study, we examined degree centrality, the strength of connection of each node with other nodes, in rsFC of 49 Taiwanese (24 females, mean (SD) age = 23.18 (2.32)) and 45 Americans (24 females, mean (SD) age =21.60 (3.33). Participants underwent resting-state functional MRI in identical 3T Siemens PRISMA scanners across sites sampling the local communities. Whole-brain univariate contrasts did not find different voxel-wise degree centralities between Americans and Taiwanese. However, evaluation of degree centrality t-value distributions in regions-of-interest revealed generally higher magnitudes in lower numbers of voxels for the Americans in DMN, Control and Limbic Network in contrast to lower magnitudes with greater spread across voxels for Taiwanese across these brain regions. We speculate that these findings provide limited support to reflect baseline brain functional connectivity differences corresponding to culture-specific information processing styles. Western analytic mindset emphasizes maintaining one dominant functional brain state at a time, leading to the formation of neural network hubs with singular stronger resonance with other areas. By contrast, East Asian holistic thinking emphasizes linkages between brain states at a given time, resulting in more distributed hubs in the brain with more asynchronous activities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:19:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:19:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝Acknowledgment i
中文摘要 ii Abstract iii 1. Introduction 1 1.1 Development of cross-cultural research 3 1.2 Cross-cultural studies and RSFC 6 1.3 Functional Connectivity Indices and Degree Centrality 7 1.4 Current study- Aim and Hypothesis 8 2. Materials and Methods 10 2.1 Participants 10 2.2 Experimental procedure 11 2.3 Brain imaging protocol 11 2.4 Resting-State Functional Data Analysis 13 2.4.1 Preprocessing 13 2.4.2 First-level analysis 14 2.4.3 Functional Connectivity Calculation 14 2.4.4 Groupwise Whole-brain Analysis 15 2.4.5 Groupwise Modular-level Analysis 16 3. Results and Discussion 17 3.1 No significant differences in whole-brain DC contrasts 17 3.2 Discussion I 17 3.3 Network differences between culture groups in modular-driven analysis 18 3.4 Discussion II 19 4. Conclusion 22 5. References 23 Figure 1. Illustration of thinking styles in Westerner and Asian brain networks 30 Figure 2. Pipeline of resting-state MR scan and functional connectivity analysis 31 Figure 3. Comparison of whole-brain degree centrality T- contrast maps 32 Figure 4. Modular degree centrality group contrasts T-value distribution in 17 Schaefer networks 33 Figure 5. Modular degree centrality group contrasts T-value distribution in original Schaefer 100 modules 34 Figure 6. DC T- value distribution of TW v.s.US, DMN-A clusters 35 Figure 7. DC T- value distribution of TW v.s.US, DMN-B clusters 36 Figure 8. DC T- value distribution of TW v.s.US, DMN-C clusters 37 Figure 9. DC T- value distribution of TW v.s.US, Control Network-A clusters 38 Figure 10. DC T- value distribution of TW v.s.US, Control Network-B clusters 39 Figure 11. DC T- value distribution of TW v.s.US, Control Network-C clusters 40 Figure 12. DC T- value distribution of TW v.s.US, Limbic-A, B clusters 41 Figure 13. DC T- value distribution of TW v.s.US, Somatomotor Network-A clusters 42 Figure 14. DC T- value distribution of TW v.s.US, Somatomotor Network-B clusters 43 Figure 15. DC T- value distribution of TW v.s.US, Dorsal Attentional Network-A clusters 44 Figure 16. DC T- value distribution of TW v.s.US, Dorsal Attentional Network-B clusters 45 Figure 17. DC T- value distribution of TW v.s.US, Salience/ Ventral Attention Network-A clusters 46 Figure 18. DC T- value distribution of TW v.s.US, Salience/ Ventral Attention Network-B clusters 47 Figure 19. DC T- value distribution of TW v.s.US, Temporo-parietal network 48 Figure 20. DC T- value distribution of TW v.s.US, Visual network (Central) 49 Figure 21. DC T- value distribution of TW v.s.US, Visual network (Peripheral) 50 Table 1. Participant demographic and MoCA info after exclusion 51 Table 2. Statistical results: Kolmogorov-Smirnov Test for modular DC contrasts distributions in TW v.s. US 52 | - |
| dc.language.iso | en | - |
| dc.subject | 跨文化 | zh_TW |
| dc.subject | 靜息態功能性磁振造影 | zh_TW |
| dc.subject | 思考 | zh_TW |
| dc.subject | 功能性連接 | zh_TW |
| dc.subject | 度中心性 | zh_TW |
| dc.subject | thinking | en |
| dc.subject | resting-state fMRI | en |
| dc.subject | functional connectivity | en |
| dc.subject | cross-culture | en |
| dc.subject | degree centrality | en |
| dc.title | 東亞和西方大腦靜息態功能連接的文化差異 | zh_TW |
| dc.title | Cultural differences in resting-state functional connectivity of East Asian and Western brain | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | Angela Gutchess;黃植懋;黃從仁 | zh_TW |
| dc.contributor.oralexamcommittee | Angela Gutchess;Chih-Mao Huang;Tsung-Ren Huang | en |
| dc.subject.keyword | 跨文化,思考,靜息態功能性磁振造影,功能性連接,度中心性, | zh_TW |
| dc.subject.keyword | cross-culture,thinking,resting-state fMRI,functional connectivity,degree centrality, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202300988 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-13 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| dc.date.embargo-lift | 2028-06-10 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 13.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
