Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李苑玲zh_TW
dc.contributor.advisorYuan-Ling Leeen
dc.contributor.author劉東岳zh_TW
dc.contributor.authorTung-Yueh Liuen
dc.date.accessioned2023-09-20T16:18:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-20-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAghajani F, Hooshmand T, Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani AH, Kazemnejad S. 2016. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol. 58(6):415-427.

Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. 2011.
Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (dpscs) and stem cells from the apical papilla (scap). Archives of Oral Biology. 56(7):709-721.

Chen K, Xiong H, Huang Y, Liu C. 2013. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (scap) and periodontal ligament stem cells (pdlscs). Archives of oral biology. 58(8):997-1006.

Colter DC, Sekiya I, Prockop DJ. 2001. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences. 98(14):7841-7845.
d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G. 2007.

Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: A pivotal synergy leading to adult bone tissue formation. Cell Death Differ. 14(6):1162-1171.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 8(4):315-317.

Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. 2006. Clonogenic assay of cells in vitro. Nature protocols. 1(5):2315-2319.

Gou S, Wang C, Liu T, Wu H, Xiong J, Zhou F, Zhao G. 2010. Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture. Cells Tissues Organs. 191(3):185-192.

Gronthos S, Arthur A, Bartold PM, Shi S. 2011. A method to isolate and culture expand human dental pulp stem cells. In: Vemuri M, Chase LG, Rao MS, editors. Mesenchymal stem cell assays and applications. Totowa, NJ: Humana Press. p. 107-121.

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. 2002. Stem cell properties of human dental pulp stem cells. J Dent Res. 81(8):531-535.

Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. 2000. Postnatal human dental pulp stem cells (dpscs) in vitro and in vivo. Proceedings of the National Academy of Sciences. 97(25):13625-13630.

Haasters F, Prall WC, Anz D, Bourquin C, Pautke C, Endres S, Mutschler W, Docheva D, Schieker M. 2009. Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy. 214(5):759-767.

Huang GT-J, Sonoyama W, Chen J, Park SH. 2006. In vitro characterization of human dental pulp cells: Various isolation methods and culturing environments. Cell and Tissue Research. 324:225-236.

Huang GTJ, Gronthos S, Shi S. 2009. Mesenchymal stem cells derived from dental tissues vs. Those from other sources: Their biology and role in regenerative medicine. J Dent Res. 88(9):792-806.

Karamzadeh R, Eslaminejad MB, Aflatoonian R. 2012. Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. Journal of Visualized Experiments. (69):e4372.

Karaöz E, Doğan BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç ZS, Yürüker S, Duruksu G, Demircan PC et al. 2010. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol. 133(1):95-112.

Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J. 2011. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs. 193(6):344-365.

Kawashima N. 2012. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration? Archives of Oral Biology. 57(11):1439-1458.

Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. 2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells. 24(5):1294-1301.

Khanna-Jain R, Vanhatupa S, Vuorinen A, Sandor G, Suuronen R, Mannerstrom B, Miettinen S. 2012. Growth and differentiation of human dental pulp stem cells maintained in fetal bovine serum, human serum and serum-free/xeno-free culture media. Journal of Stem Cell Research and Therapy. 2(4).

Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG. 1997. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 12(9):1335-1347.

Ma L, Huang Z, Wu D, Kou X, Mao X, Shi S. 2021. Cd146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Research & Therapy. 12(1):1-16.

Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari PL, Ricci F, Pasquinelli G et al. 2009. Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol. 22(3):699-706.

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. 2003. Shed: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences. 100(10):5807-5812.

Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K. 2005. Isolation of precursor cells (pcs) from human dental follicle of wisdom teeth. Matrix Biology. 24(2):155-165.

Mozaffari MS, Emami G, Khodadadi H, Baban B. 2019. Stem cells and tooth regeneration: Prospects for personalized dentistry. The EPMA Journal. 10(1):31-42.

Niehage C, Karbanová J, Steenblock C, Corbeil D, Hoflack B. 2016. Cell surface proteome of dental pulp stem cells identified by label-free mass spectrometry. PLoS One. 11(8):e0159824.

Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okiji T. 2019. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Scientific Reports. 9(1):5430.

Odorico JS, Kaufman DS, Thomson JA. 2001. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 19(3):193-204.

Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. 2004. Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet. 364(9429):149-155.

Sonoyama W, Liu Y, Fang DAJ, Yamaza T, Seo BM, Zhang CM, Liu H, Gronthos S, Wang CY, Shi ST et al. 2006. Mesenchymal stem cell-mediated functional tooth regeneration in swine. Plos One. 1(1):8.

Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT-J. 2008. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. Journal of Endodontics. 34(2):166-171.

Suchanek J, Soukup T, Visek B, Ivancakova R, Kucerova L, Mokry J. 2009. Dental pulp stem cells and their characterization. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc. 153(1).

Tekkatte C, Gunasingh GP, Cherian KM, Sankaranarayanan K. 2011. "Humanized" stem cell culture techniques: The animal serum controversy. Stem Cells International. 2011:14.

Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, Tang Z, Zhang G, Tang C, Yu J et al. 2013. Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional kh(2)po(4). Cell Prolif. 46(2):214-222.

Wen Y, Wang F, Zhang W, Li Y, Yu M, Nan X, Chen L, Yue W, Xu X, Pei X. 2012. Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A. 18(15-16):1677-1685.

Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT-J. 2010. Ips cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells and Development. 19(4):469-480.

Young A, Kingsley K. 2015. Dental pulp stem cells: A review of factors that influence the therapeutic potential of stem cell isolates. Biomaterials and Biomedical Engineering. 2(2):61-69.

柳青青. 2019. 研發搭載tideglusib之雙相型透明質酸膠體在牙本質牙髓組織再生的應用. 國立臺灣大學.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89772-
dc.description.abstract穩定且合適的幹細胞來源在牙髓組織再生研究扮演關鍵角色,其中以牙髓幹細胞(dental pulp stem cell, DPSC)與牙根尖乳突幹細胞(stem cell from apical papilla, SCAP)應用最廣。然而幹細胞培養多採用高血清(15-20%)培養液(high serum medium),長期可能導致幹細胞失去幹細胞特性、自我分化以及增加潛在惡性轉化風險,使得在牙髓組織再生研究應用的幹細胞多侷限於第3至第8代。後續有學者提出低血清(2%)培養液並添加生長因子(low serum medium with growth factors, LSM-GF)的配方進行DPSC的分離與繼代培養,證實其幹細胞表面標記可維持至第20代以上而沒有顯著改變,讓DPSC細胞可得性增加。然而這類研究多聚焦於DPSC,並無SCAP相關數據,並且僅有幹細胞標記表現結果,缺少多工分化能力的探討,對於LSM-GF用於繼代培養是否能保有幹細胞特性仍有待進一步研究確認。本研究目的是評估以LSM-GF進行繼代培養的DPSC與SCAP之生長行為與多工分化能力,進而探討使用LSM-GF培養液對於維持不同代數的DPSC與SCAP幹細胞特性的影響效應,評估其在牙髓再生研究應用的可行性。

本研究使用本研究團隊先前完成幹細胞標記鑑定並冷凍保存之DPSC與SCAP進行研究,這些幹細胞於初代培養後即使用LSM-GF進行繼代培養,依照細胞繼代數將其分為三個組別:小於第十代(≦P10)、第十三至第十八代(P13~P18)、大於第二十代(≧ P20)。分別進行細胞增殖、生長曲線以及群落形成能力評估以探討DPSC和SCAP的生長行為特性,同時對不同代數的DPSC與SCAP進行成骨、成脂、軟骨分化誘導實驗,了解幹細胞的多工分化能力在繼代培養後是否產生差異。

研究結果顯示,使用LSM-GF所培養的DPSC與SCAP均呈現細長紡錘狀,DPSC有略大於SCAP的趨勢,且兩者在 ≧ P20細胞均有變大的情形。而 ≦P10與P13~P18的生長曲線相似,生長速度隨著繼代培養次數增加有逐漸下降的現象,在≧ P20會有顯著差異;而相同代數下,SCAP增殖速度較DPSC快速,有較短的倍增時間(doubling time)、更多的群體倍增數(population doubling)以及細胞群落(colony)形成。而在分化能力方面,DPSC與SCAP在培養到 ≧ P20皆可被誘導分化形成鈣化、脂肪與軟骨質而保有多工分化的能力。同時SCAP成骨能力優於DPSC,在較短的時間即可出現鈣化沈積,此外兩種細胞皆隨著繼代數增加,均可在較短的誘導時間即出現鈣化沈積,顯現較強的成骨分化能力。DPSC與SCAP在成脂能力方面沒有明顯的差異,兩種細胞皆會隨著誘導時間增加而有更多的油滴形成,但是不同代數之間沒有明顯的差異。DPSC與SCAP在誘導後兩週皆能看到軟骨分化,兩種細胞在不同代數之間沒有顯著差異。

總結來說,在20代的繼代培養下,無論是DPSC與SCAP均可維持其多工分化能力。而DPSC與SCAP在 ≧ P20後,細胞大小與生長速度均有顯著的改變,但在P18代前的差異不大,可做為合適的幹細胞來源。此外與DPSC 相比,SCAP細胞生長速度較快,且生長行為隨繼代數增加的變化較不明顯,繼代後的穩定性較好,更適合用於牙髓再生研究。
zh_TW
dc.description.abstractStable and suitable sources of stem cells play a crucial role in pulp regeneration research, with dental pulp stem cells (DPSC) and stem cells from apical papilla (SCAP) being the most widely used. However, isolating and culturing these dental-derived stem cells using high serum medium (15-20%) is suggested, which may cause the loss of stem cell characteristics, self-differentiation and increase the risk of potential malignant transformation after long-term passage. As a result, stem cells used in pulp regeneration are mostly limited to the 3rd to 8th passages. Subsequently, researchers have proposed a formulation using low serum medium (2%) with the addition of growth factors (LSM-GF) for the isolation and subculture of DPSC, which has been shown to maintain their stem cell surface markers for over the 20th passage, thereby increasing the availability of DPSC cells. However, current studies mostly focus on DPSC and lack SCAP-related data. Only the expression of stem cell markers was evaluated, without investigating their multi-differentiation potential. Further research is needed to confirm whether the stem cell characteristics can be maintained using LSM-GF for subculture. The purpose of this study is to evaluate the growth behaviors and multi-differentiation ability of DPSC and SCAP at different passages using LSM-GF for subculture, and to investigate whether their stem cell characteristics are affected after subculture, assessing its feasibility for application in pulp regeneration research.

In this study, DPSC and SCAP previously identified and cryopreserved by our research team were used. These stem cells were subjected to subculture using LSM-GF immediately after reaching 70-80% confluence in primary culture. Based on the cell passages, they were divided into three groups: less than the 10th passage (≦P10), the 13th to 18th passages (P13~P18), and greater than the 20th passage (≧P20). Cell proliferation, growth curves, and colony-forming ability of DPSC and SCAP at different passages were evaluated. Additionally, osteogenic, adipogenic, and chondrogenic induction experiments were conducted on DPSC and SCAP at different passages to investigate their multi-differentiation ability.

The results showed that both DPSC and SCAP subcultured in LSM-GF exhibited a spindle-shaped morphology, with DPSC slightly larger than SCAP. Both DPSC and SCAP showed an increase in cell size after P20. Before P18, both DPSC and SCAP demonstrated similar growth curves, with a gradual decrease in growth rate as cell passages increased. However, the growth rate decreased significantly in both cell types after P20. Among the same passages, SCAP proliferated faster than DPSC, with a shorter doubling time and more population doublings and colony formation. In terms of multi-differentiation potential, DPSC and SCAP at all passages could differentiate into osteogenic, adipogenic, and chondrogenic lineages while maintaining their multi-differentiation ability. SCAP exhibited superior osteogenic ability compared to DPSC, showing calcified deposition in a shorter induction period. Additionally, both cell types showed early calcified deposition in later passages, indicating a stronger osteogenic differentiation potential. DPSC and SCAP showed similar adipogenic and chondrogenic abilities at different passages. Both cell types showed increased formation of lipid droplets with longer induction time.

In summary, both DPSC and SCAP retained their multi-differentiation ability up to the P20 passage. Significant changes in cell size and growth rate were observed after the P20 passage. However, DPSC and SCAP exhibited similar growth behaviors before the P18 passage, indicating that cells before the P18 passage can be considered suitable sources of stem cells. Moreover, SCAP demonstrated a faster cell growth rate and consistent growth behaviors across different passages compared to DPSC, making it more suitable for dental pulp regeneration research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:18:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-20T16:18:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
目錄 vi
圖目錄 ix
表目錄 xi
縮寫表 xii
縮寫表 xiii
第一章 前言 1
第二章 文獻回顧 3
2.1 幹細胞簡介與表面標記物 3
2.2 幹細胞在牙髓再生的應用與發展 4
2.3 齒源性幹細胞 5
2.3.1 牙髓幹細胞 5
2.3.2 牙根尖乳突幹細胞 5
2.3.3 人類乳牙牙髓幹細胞 6
2.3.4 牙周韌帶幹細胞 6
2.3.5 牙囊祖細胞 6
2.4 培養條件對於幹細胞的影響 7
2.5 低血清培養條件的幹細胞特性 8
第三章 動機與目的 9
第四章 材料與方法 10
4.1 儀器裝置 10
4.2 藥品材料 10
4.3 齒源性幹細胞之培養 12
4.3.1 細胞培養液配方 12
4.3.2 細胞來源分離與培養 13
4.3.3 細胞解凍與繼代培養方法 13
4.4 實驗分組 14
4.5 細胞生長形態與生長特性分析 14
4.5.1 細胞生長形態觀察 14
4.5.2 細胞增殖能力分析 14
4.5.3 細胞生長行為分析 15
4.5.4 細胞群落形成能力分析 15
4.6 細胞成骨分化 16
4.6.1 細胞成骨誘導 16
4.6.2 成骨分化定性分析 16
4.6.3 成骨分化定量分析 16
4.7 細胞成脂分化 17
4.7.1 細胞分化培養 17
4.7.2 定性分析 17
4.8 細胞軟骨分化 18
4.8.1 細胞分化培養 18
4.8.2 樣本包埋 18
4.8.3 定性分析 18
4.8.4 免疫組織化學染色 19
4.9 統計分析 20
第五章 結果 21
5.1 細胞生長特性分析 21
5.1.1 齒源性幹細胞之細胞形態 21
5.1.2 齒源性幹細胞之細胞增殖能力分析 21
5.1.3 齒源性幹細胞之細胞生長曲線 22
5.1.4 齒源性幹細胞之細胞群落形成能力分析 22
5.2 細胞分化能力分析 22
5.2.1 齒源性幹細胞之成骨分化能力分析 22
5.2.2 齒源性幹細胞之成脂分化能力分析 23
5.2.3 齒源性幹細胞之軟骨分化能力分析 24
第六章 討論 25
6.1 齒源性幹細胞分離純化與繼代培養 25
6.2 齒源性幹細胞之生長特性探討 25
6.2.1 細胞分組與實驗條件設定 25
6.2.2 不同齒源性幹細胞形態與大小之探討 26
6.2.3 不同齒源性幹細胞生長增生行為之探討 27
6.2.4 不同齒源性幹細胞群落形成能力之探討 28
6.3 齒源性幹細胞分化特性之探討 29
6.3.1 齒源性幹細胞之分化實驗設計探討 29
6.3.2 齒源性幹細胞之成骨分化能力探討 30
6.3.3 齒源性幹細胞之成脂分化能力探討 31
6.3.4 齒源性幹細胞之軟骨分化能力探討 31
第七章 結論 33
參考文獻 35
附錄 38
-
dc.language.isozh_TW-
dc.title使用低血清培養液繼代培養之牙髓幹細胞及牙根尖乳突幹細胞特性分析zh_TW
dc.titleCharacteristics of DPSC and SCAP subcultured with low-serum mediumen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林峯輝;鄭景暉zh_TW
dc.contributor.oralexamcommitteeFeng-Huei Lin;Jing-Huei Jengen
dc.subject.keyword牙髓幹細胞,分化能力,生長特性,含生長因子低血清培養液,牙髓再生,牙根尖乳突幹細胞,zh_TW
dc.subject.keyworddental pulp stem cell,differentiation,growth characteristic,low serum medium with growth factor,pulp regeneration,stem cell from apical papilla,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202303684-
dc.rights.note未授權-
dc.date.accepted2023-08-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
26.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved