請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89769完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃 | zh_TW |
| dc.contributor.advisor | Jia-Kun Chen | en |
| dc.contributor.author | 蔡艾倫 | zh_TW |
| dc.contributor.author | Ai-Luen Tsai | en |
| dc.date.accessioned | 2023-09-20T16:18:09Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-19 | - |
| dc.identifier.citation | 行政院農業委員會。農業統計年報(110年)。2022年。
行政院農業委員會。農政與農情-台灣養豬現況與收益分析。2003年。 Maksym, V., et al., The main trends and perspectives of pork production development in the world. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 2020. 22(96): p. 21-27. Rosa, G.J.M., Grand Challenge in Precision Livestock Farming. Frontiers in Animal Science, 2021. 2. Collins, L.M. and L.M. Smith, Review: Smart agri-systems for the pig industry. animal, 2022. 16: p. 100518. Herrero, M., et al., Livestock and the Environment: What Have We Learned in the Past Decade? Annual Review of Environment and Resources, 2015. 40(1): p. 177-202. Wang, S., et al., The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors, 2022. 22(17): p. 6541. García, R., et al., A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 2020. 179: p. 105826. 行政院農業委員會畜牧處。培育新世代養豬專業提升產業永續競爭力。2022。 Thomas M. Banhazi, H.L., J L Black, H Crabtree, P Schofield, M Tscharke, D Berckmans, Precision Livestock Farming: An international review of scientific and commercial aspects. Int J Agric & Biol Eng, 2012. 5(3): p. 1. Yang, Q., D. Xiao, and S. Lin, Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Computers and Electronics in Agriculture, 2018. 155: p. 453-460. Zhu, W.-x., et al., Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livestock Science, 2017. 205: p. 129-136. Nasirahmadi, A., S.A. Edwards, and B. Sturm, Implementation of machine vision for detecting behaviour of cattle and pigs. Livestock Science, 2017. 202: p. 25-38. Vranken, E. and D. Berckmans, Precision livestock farming for pigs. Animal Frontiers, 2017. 7(1): p. 32-37. Benjamin, M. and S. Yik, Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals, 2019. 9(4): p. 133. Arulmozhi, E., et al., Machine Learning-Based Microclimate Model for Indoor Air Temperature and Relative Humidity Prediction in a Swine Building. Animals, 2021. 11(1): p. 222. Matthews, S.G., et al., Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Scientific Reports, 2017. 7(1). Shao, H., J. Pu, and J. Mu, Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration. Animals, 2021. 11(5): p. 1295. Zhang, K., et al., Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks. Sensors, 2020. 20(4): p. 1085. Chen, C., et al., Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs. Computers and Electronics in Agriculture, 2017. 142: p. 380-387. Viazzi, S., et al., Image feature extraction for classification of aggressive interactions among pigs. Computers and Electronics in Agriculture, 2014. 104: p. 57-62. Kim, K.Y., et al., Temporal and spatial distributions of aerial contaminants in an enclosed pig building in winter. Environmental Research, 2005. 99(2): p. 150-157. Verstegen, M.W.A., et al., The Influence of Ammonia and Humidity on Activity and Energy Balance Data in Groups of Pigs. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde, 2009. 37(1-6): p. 255-263. Geers, R., et al., An assessment of optimal air temperatures in pig houses by the quantification of behavioural and health-related problems. Animal Production, 1989. 48(3): p. 571-578. Huynh, T.T.T., et al., Effects of increasing temperatures on physiological changes in pigs at different relative humidities1. Journal of Animal Science, 2005. 83(6): p. 1385-1396. Huynh, T.T.T., et al., Thermal behaviour of growing pigs in response to high temperature and humidity. Applied Animal Behaviour Science, 2005. 91(1): p. 1-16. Sejian, V., et al., Review: Adaptation of animals to heat stress. animal, 2018. 12(s2): p. s431-s444. Lee, H., et al., Influence of temperature on prevalence of health and welfare conditions in pigs: time-series analysis of pig abattoir inspection data in England and Wales. Epidemiol Infect, 2020. 148: p. e30. Tzanidakis, C., et al., An overview of the current trends in precision pig farming technologies. Livestock Science, 2021. 249: p. 104530. Ruiz-Garcia, L. and L. Lunadei, The role of RFID in agriculture: Applications, limitations and challenges. Computers and Electronics in Agriculture, 2011. 79(1): p. 42-50. Cang, Y., H. He, and Y. Qiao, An Intelligent Pig Weights Estimate Method Based on Deep Learning in Sow Stall Environments. IEEE Access, 2019. 7: p. 164867-164875. Wang, X., et al., Cough sound analysis to assess air quality in commercial weaner barns. Computers and Electronics in Agriculture, 2019. 160: p. 8-13. Shen, W., et al., A new fusion feature based on convolutional neural network for pig cough recognition in field situations. Information Processing in Agriculture, 2021. 8(4): p. 573-580. Minwoo, R., et al. Design and implementation of a connected farm for smart farming system. IEEE. Alameer, A., et al., Automatic recognition of feeding and foraging behaviour in pigs using deep learning. Biosystems Engineering, 2020. 197: p. 91-104. Maselyne, J., et al., Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal, 2016. 10(9): p. 1557-1566. Arulmozhi, E., et al., The Application of Cameras in Precision Pig Farming: An Overview for Swine-Keeping Professionals. Animals, 2021. 11(8): p. 2343. Gresse, R., et al., Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends in Microbiology, 2017. 25(10): p. 851-873. Dekker, M., The effect of temperature and activity patterns on lying behaviour and space use in conventional housed fattening pigs. 2015, Wageningen University Wageningen, The Netherlands. Shao, B. and H. Xin, A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Computers and electronics in agriculture, 2008. 62(1): p. 15-21. Tanida, H., et al., Behavioral responses of piglets to darkness and shadows. Applied Animal Behaviour Science, 1996. 49(2): p. 173-183. Arulmozhi, E., et al., Impacts of nipple drinker position on water intake, water wastage and drinkingduration of pigs. Turkish Journal of Veterinary & Animal Sciences, 2020. 44(3): p. 562-572. Kashiha, M., et al., The automatic monitoring of pigs water use by cameras. Computers and Electronics in Agriculture, 2013. 90: p. 164-169. Chen, C., et al., Detection of aggressive behaviours in pigs using a RealSence depth sensor. Computers and Electronics in Agriculture, 2019. 166: p. 105003. D’Eath, R.B., et al., Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak. PLOS ONE, 2018. 13(4): p. e0194524. Taylor, N.R., et al., Tail-biting: A new perspective. The Veterinary Journal, 2010. 186(2): p. 137-147. Niu, X. and Q. Wang, Prevention and Control of Porcine Epidemic Diarrhea: The Development of Recombination-Resistant Live Attenuated Vaccines. Viruses, 2022. 14(6). Vögeli, et al., [Inheritance and disease in the pig: possibilities of use for breeding]. Schweiz Arch Tierheilkd, 2014. 156(6): p. 269-77. Liu, P., et al., Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with E. coli K88. Journal of animal science, 2010. 88: p. 3871-9. Redmon, J., et al., You Only Look Once: Unified, Real-Time Object Detection. arXiv pre-print server, 2016. Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. pmlr. LLC, u. Ultralytics YOLOv5-Tips for Best Training Results. 2023 [cited 2023 05/10]; Available from: https://docs.ultralytics.com/yolov5/tutorials/tips_for_best_training_results/. Luke, J., R. Joseph, and M. Balaji, IMPACT OF IMAGE SIZE ON ACCURACY AND GENERALIZATION OF CONVOLUTIONAL NEURAL NETWORKS. 2019. 6: p. 70-80. Radiuk, P.M., Impact of training set batch size on the performance of convolutional neural networks for diverse datasets. Information Technology and Management Science, 2017. 20(1): p. 20-24. Bengio, Y., Practical recommendations for gradient-based training of deep architectures. Neural Networks: Tricks of the Trade: Second Edition, 2012: p. 437-478. Masters, D. and C. Luschi, Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612, 2018. National Animal Welfare Advisory Committee, Animal Welfare (Pigs) Code of Welfare 2010 2010. Metz, J.A. and A. Finn, Influenza and humidity--Why a bit more damp may be good for you! J Infect, 2015. 71 Suppl 1: p. S54-8. 中華民國行政院環境保護署。室內空氣品質標準。2012年。 中華民國行政院環境保護署。空氣品質標準。2020年。 Mishra, R., et al., Particulate matter (PM(10)) enhances RNA virus infection through modulation of innate immune responses. Environ Pollut, 2020. 266(Pt 1): p. 115148. Arruda, A.G., et al., Aerosol Detection and Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): What Is the Evidence, and What Are the Knowledge Gaps? Viruses, 2019. 11(8): p. 712. Neumann, E.J., et al., Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. Journal of the American Veterinary Medical Association, 2005. 227(3): p. 385-392. Ni, J.-Q., et al., Volatile organic compounds at swine facilities: A critical review. Chemosphere, 2012. 89(7): p. 769-788. Anundi, H., et al., High exposures to organic solvents among graffiti removers. International Archives of Occupational and Environmental Health, 1993. 65(4): p. 247-251. American Humane, American Humane Certified™ Animal Welfare Standards for Swine. 2017. Kittas, C., T. Bartzanas, and A. Jaffrin, Greenhouse evaporative cooling: Measurement and data analysis. Transactions of the ASAE, 2001. 44. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89769 | - |
| dc.description.abstract | 本研究建立影像辨識方法協助豬舍管理者蒐集豬隻攝食量及排泄物的健康資料,再透過建立豬舍內部空氣品質與豬隻健康間的相關性以達到降低豬舍人力短缺及提供農民輔助監控豬隻健康的資訊。實際的場域量測於彰化縣一豬舍進行空氣品質監測母豬產房現場環境條件,包括溫度、濕度、PM2.5、PM10、CO2、TVOC、NH3。基於YOLOv5建立影像辨識模型進行收集母豬健康資料,包含手寫文字辨識模型及排泄物健康判斷模型,透過訓練模型獲得最合適的手寫文字辨識(model 13)及母豬排泄物(feces model 3)健康判斷模型,mAP_0.5及精準度(precision)皆達到0.99,手寫文字辨識模型之最終測試準確率達到97%。後續分析母豬健康狀態的資料與豬舍內部空氣品質間相關性可知,空氣品質指標除氨氣外,其餘皆對於母豬的健康狀態有顯著的影響,TVOC、CO2及溫度的增加可能會對母豬攝食量的健康狀態產生負面影響,而溫度、濕度、PM10的增加可能會對母豬的排泄物健康狀態產生負面影響,可提供在未來建置母豬疾病預測模型時衡量變項的依據。綜合上述研究結果可得知在建置影像辨識模型時的重要參考要項,訓練樣本和標記的質量是關鍵因素,而模型的參數調整和過擬合(overfitting)與否皆需特別注意。透過豬隻健康狀態與空氣品質間的相關性分析,可提供豬場管理者協助改善母豬的生產環境,降低母豬疾病風險及提高生產效益,並提供未來研究建置疾病預測模型的建置參考。 | zh_TW |
| dc.description.abstract | To address the labor shortage in agricultural farms and facilitate pig health monitoring, a field study was conducted in a farrowing house located in Changhua County. The study focused on monitoring various environmental parameters, including temperature, humidity, PM2.5, PM10, CO2, TVOC, and NH3. An image recognition model based on YOLOv5 was developed to gather sow health data, specifically for handwriting recognition and feces health assessment. Through rigorous model training, exceptional precision rates were achieved for both handwriting recognition (0.99) and sow feces health judgment (0.99), with a final test accuracy of 97% for the handwriting recognition model. Furthermore, the study conducted an analysis to examine the correlation between sow health status and air quality indicators. The results indicated significant impacts of TVOC, CO2, temperature, humidity, and PM10 on sow health, excluding ammonia. Elevated levels of TVOC, CO2, and temperature were found to adversely affect sow intake health status, whereas increased temperature, humidity, and PM10 had negative effects on sow excretion health status. These findings serve as a fundamental basis for the development of future sow disease prediction models. The construction of an accurate image recognition model necessitates high-quality training samples and meticulous attention to model parameters to mitigate overfitting. By investigating the relationship between pig health and air quality, it is possible to optimize sow production environments, reduce disease risks, enhance production efficiency, and establish a valuable reference for future research endeavors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:18:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:18:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract IV 目錄 V 表目錄 VII 圖目錄 IX 縮寫說明 X 符號說明 XII 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 3 1.3 文獻回顧 4 1.3.1 智慧農業對豬舍上的應用 4 1.3.2 影響豬隻健康與其行為改變之指標 4 1.3.3 文獻總結 5 第二章 材料與方法 6 2.1 實驗流程 6 2.2 現場量測 6 2.2.1 豬舍內部環境參數量測 6 2.2.2 母豬攝食量資料蒐集 6 2.3.3 母豬排泄物狀況蒐集 7 2.3 實驗儀器與設備 8 2.3.1 空氣品質監測器 8 2.3.2 監視器 8 2.4 影像辨識模型 8 2.4.1 YOLO辨識方法 9 2.4.2 YOLO各版本比較 10 2.4.3 手寫數字辨識模型-攝食量 11 2.4.4 母豬排泄物健康辨識模型-排泄物 12 2.4.5 模型訓練效能評估指標 12 2.5 相關性統計分析 13 第三章 結果 15 3.1 人工智慧影像辨識模型建立 15 3.1.1 手寫文字辨識模型訓練結果比較 15 3.1.2 排泄物健康狀態辨識模型 16 3.2 母豬產房內空氣品質與母豬健康狀態間相關性 16 3.2.1 母豬產房內空氣品質資料 17 3.2.2 空氣品質與母豬攝食量間的相關性 17 3.2.3 空氣品質與排泄物健康狀態間的相關性 18 3.2.4 攝食量與排泄物健康狀態間的相關性 19 3.2.5 時間延遲狀況評估 19 第四章 討論 20 4.1 影像辨識模型訓練結果 20 4.1.1 手寫文字辨識模型 20 4.1.2 豬隻排泄物健康狀態影像辨識模型 21 4.2 空氣品質與母豬健康狀態間相關性討論 23 4.2.1 豬舍母豬產房空氣品質 23 4.2.2 空氣品質與母豬攝食量狀態間相關性 24 4.2.3 空氣品質與母豬排泄物健康狀態間相關性 25 第五章 結論與建議 27 第六章 參考文獻 29 附錄A 60 A-1 手寫文字辨識各模型訓練可視化結果 60 A-2 排泄物健康狀態辨識各模型訓練可視化結果 121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 精準畜禽飼養管理 | zh_TW |
| dc.subject | 影像辨識模型 | zh_TW |
| dc.subject | 豬隻疾病 | zh_TW |
| dc.subject | swine disease | en |
| dc.subject | precision livestock farming system(PLF) | en |
| dc.subject | image recognition model | en |
| dc.title | 基於人工智慧輔助建立豬隻健康與室內環境品質間相關性 | zh_TW |
| dc.title | Establishing Correlation Between Pig Health and Indoor Environment Quality Assisted by Artificial Intelligence | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾子彝;梁佑全;黃盛修 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-I Tseng;Yu-Chuan Liang;Sheng-Hsiu Huang | en |
| dc.subject.keyword | 精準畜禽飼養管理,影像辨識模型,豬隻疾病, | zh_TW |
| dc.subject.keyword | precision livestock farming system(PLF),image recognition model,swine disease, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202301085 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-06-20 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 9.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
