請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89763
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王彥雯 | zh_TW |
dc.contributor.advisor | CHARLOTTE WANG | en |
dc.contributor.author | 紀備文 | zh_TW |
dc.contributor.author | Pei-Wen Chi | en |
dc.date.accessioned | 2023-09-20T16:16:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-20 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-06-08 | - |
dc.identifier.citation | 1. Asplin, B.R., et al., A conceptual model of emergency department crowding. Ann Emerg Med, 2003. 42(2): p. 173-80.
2. Asaro, P.V., L.M. Lewis, and S.B. Boxerman, The impact of input and output factors on emergency department throughput. Acad Emerg Med, 2007. 14(3): p. 235-42. 3. Rathlev, N.K., et al., Time series analysis of emergency department length of stay per 8-hour shift. West J Emerg Med, 2012. 13(2): p. 163-8. 4. Singer, A.J., et al., The association between length of emergency department boarding and mortality. Acad Emerg Med, 2011. 18(12): p. 1324-9. 5. Ackroyd-Stolarz, S., et al., The association between a prolonged stay in the emergency department and adverse events in older patients admitted to hospital: a retrospective cohort study. BMJ Qual Saf, 2011. 20(7): p. 564-9. 6. Kim, J.S., et al., Prolonged Length of Stay in the Emergency Department and Increased Risk of In-Hospital Cardiac Arrest: A nationwide Population-Based Study in South Korea, 2016-2017. J Clin Med, 2020. 9(7). 7. Sir, O., et al., Risk Factors for Prolonged Length of Stay of Older Patients in an Academic Emergency Department: A Retrospective Cohort Study. Emerg Med Int, 2019. 2019: p. 4937827. 8. Carter, E.M. and H.W. Potts, Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med Inform Decis Mak, 2014. 14: p. 26. 9. Shaaban, A.N., B. Peleteiro, and M.R.O. Martins, Statistical models for analyzing count data: predictors of length of stay among HIV patients in Portugal using a multilevel model. BMC Health Serv Res, 2021. 21(1): p. 372. 10. Smith, I.D., et al., Pre-operative predictors of the length of hospital stay in total knee replacement. J Bone Joint Surg Br, 2008. 90(11): p. 1435-40. 11. Wiler, J.L., et al., Predictors of patient length of stay in 9 emergency departments. Am J Emerg Med, 2012. 30(9): p. 1860-4. 12. Jonas, S.C., et al., Factors influencing length of stay following primary total knee replacement in a UK specialist orthopaedic centre. Knee, 2013. 20(5): p. 310-5. 13. Hofer, K.D. and R.K. Saurenmann, Parameters affecting length of stay in a pediatric emergency department: a retrospective observational study. Eur J Pediatr, 2017. 176(5): p. 591-598. 14. Qualls, M., D.J. Pallin, and J.D. Schuur, Parametric versus nonparametric statistical tests: the length of stay example. Acad Emerg Med, 2010. 17(10): p. 1113-21. 15. Ebinger, J., et al., A Machine Learning Algorithm Predicts Duration of hospitalization in COVID-19 patients. Intell Based Med, 2021. 5: p. 100035. 16. Chaou, C.H., et al., Predicting Length of Stay among Patients Discharged from the Emergency Department-Using an Accelerated Failure Time Model. PLoS One, 2017. 12(1): p. e0165756. 17. Forster, A.J., et al., The effect of hospital occupancy on emergency department length of stay and patient disposition. Academic Emergency Medicine, 2003. 10(2): p. 127-133. 18. Chan, L., K.M. Reilly, and R.F. Salluzzo, Variables that affect patient throughput times in an academic emergency department. Am J Med Qual, 1997. 12(4): p. 183-6. 19. Etu, E.-E., et al., Prediction of Length of Stay in the Emergency Department for COVID-19 Patients: A Machine Learning Approach. IEEE Access, 2022. 10: p. 42243-42251. 20. Gurazada, S.G., et al., Predicting Patient Length of Stay in Australian Emergency Departments Using Data Mining. Sensors (Basel), 2022. 22(13). 21. Kadri, F., et al., Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework. J Ambient Intell Humaniz Comput, 2022: p. 1-15. 22. Rahman, M.A., et al., Using data mining to predict emergency department length of stay greater than 4 hours: Derivation and single-site validation of a decision tree algorithm. Emerg Med Australas, 2020. 32(3): p. 416-421. 23. Monahan, A.C., S.S. Feldman, and T.P. Fitzgerald, Reducing Crowding in Emergency Departments With Early Prediction of Hospital Admission of Adult Patients Using Biomarkers Collected at Triage: Retrospective Cohort Study. JMIR Bioinformatics and Biotechnology, 2022. 3(1). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89763 | - |
dc.description.abstract | 研究背景
急診病患在急診的滯留時間與病人就診量、急診病人住院率、醫院佔床率等原因相關。急診滯留時間長短是急診的品質指標,過長的急診待床時間會增加病人住院中不良反應(adverse effect)、病人死亡率和總住院長度。過去研究對於急診滯留時間的分析,一般會區分住院病人和出院病人,去分析急診滯留時間增加的危險因子,但是這樣的研究方式無法套用在新到診,尚不知道是否要住院的病人身上,因此目前缺乏剛到診急診病患的急診滯留時間風險因子分析研究。 研究目的 本研究回溯性分析病患到急診時,不同病患基本資料、檢傷嚴重度和急診室運作結果下,急診滯留小時數目增減的因子為何和相對風險(relative risk, RR)的大小。 研究方法 本研究使用卜瓦松迴歸(Poisson regression model, PRM)和負二項迴歸(negative binomial regression model, NBRM)模型, 運用三種變數選擇的策略,包括向前選擇模型(forward selection model)、後向剃除模型(backward selection model)和群組式的最小絕對緊縮與選擇算子(group least absolute shrinkage and selection operator, gLASSO)的方式,選擇出赤池訊息準則(Akaike information criterion, AIC)最低的變數組合。 研究結果 A醫學中心的急診滯留時間呈現右偏分布,與其他醫院急診滯留時間相同。本研究發現在同樣變數選擇組合下,負二項迴歸的赤池訊息準則皆較卜瓦松迴歸為低,與其他滯留時間相關研究結果相同。病人在急診滯留的時間長短,在病人特質層面部分,年紀越大急診病人滯留小時數目越長;在臨床表現層面部分,檢傷一二級病人、內科、或救護車來診的病人,會相較其他病人有較高的急診滯留小時數目;在組織行政層面部分,一般病房占床率越高、病患之急診等候分鐘數越長,到診時急診病人數量較多,急診病人滯留小時數目越長。 結論與討論 本研究建議未來研究使用負二項迴歸來分析急診滯留時間。本研究的設計為病人層級的急診滯留小時數目研究,其統計方法假設符合急診滯留小時數目的分布。本研究的急診室是一個幾乎不拒絕救護車、無轉院、無未看診就離開病人的急診室,因此本研究找出的危險因子可視為可能影響急診滯留小時數目的原因。 | zh_TW |
dc.description.abstract | Backgrounds
Length of stay (LOS) in the emergency department (ED) is related to the number of in-ED patients amounts, the hospitalization rate of emergency patients, and the hospital bed occupancy rate. LOS in ED is one of the quality indexes of the emergency department. Increased boarding time in ED will increase the adverse effects, the mortality rate, and the total length of hospitalization of patients admitted from the ED. In the past, studies on the analysis of emergency LOS generally distinguished between inpatients and discharged patients to analyze the risk factors for increased LOS, but such research methods cannot be applied to new patients who do not know whether they will be hospitalized or not. Therefore, there is currently a lack of research on the risk factors of emergency stay time among patients who have just arrived in the ED. Purpose This study retrospectively analyzed the factors of the increase and decrease in the number of hours spent in the ED and the relative risks (RR) under different demographical, clinical, and organizational characteristics when patients came to the ED. Methods In this study, Poisson regression (PRM) and negative binomial regression (NBRM) models were used. Three variable selection strategies were used, including the forward selection model, backward selection model, and group least absolute shrinkage and selection operator (gLASSO), to select the variable combination with the lowest Akaike information criterion (AIC). Results ED LOS in medical center A has a right-tailed distribution, which is the same as the ED LOS in other hospitals. This study found that under the same variable selection combination, the AIC of negative binomial regression was lower than that of Poisson regression, which suggests an overdispersion of the ED LOS data. In terms of demographical characteristics, the older the emergency patient is, the longer the number of hours spent in the emergency department. In terms of clinical characteristics, patients with first- and second-level triage, non-traumatic, or ambulance-delivered will have a higher number of hours spent in emergency departments than other patients. In terms of organizational characteristics, the higher the bed occupancy rates, the longer the waiting minutes, the greater in-ED patient amounts when they arrive, and the number of emergency patient stay hours longer. Discussions and Conclusions This study recommends future studies use NBRM to analyze ED LOS. The design of this study is a patient-level study of the number of hours spent in emergency departments, and its statistical method is consistent with the distribution of LOS in ED. The emergency room of this study is an emergency room that almost never refuses ambulances, transfers, and leaves patients without seeing a doctor. Therefore, the influence and directionality of each risk factor mentioned in this study on ED LOS can be considered as a possible cause of prolonged ED LOS. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:16:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-20T16:16:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 第一章 簡介Introduction 1 第一節 急症照護系統現況與急診滯留時間定義 1 第二節 急診滯留時間長短對急診照護的影響 2 第三節 急診滯留時間過長的因素 3 第四節 住院滯留時間和急診滯留時間的研究方法 3 第五節 臺北市某醫學中心急診現況和看診模式 4 第六節 本研究之研究目的 5 第七節 本研究之預期結果 5 第二章 研究方法Methods 6 第一節 研究族群 6 第二節 研究方法 7 第三節 統計方法 7 第三章 結果Results 9 第一節 急診滯留小時數目和影響急診滯留時間的因子 9 第二節 急診滯留小時數目相關性分析 12 第三節 模型建構與結果 14 第四節 敏感性分析(分層分析) 16 第四章 討論與結論Discussions and Conclusions 19 第一節 研究總結 19 第二節 本研究的主要結果 19 第三節 過去研究結果與本研究的相同和相異處 22 第四節 本研究的優點和限制 22 第五節 未來發展 23 第五章 參考資料References 24 第六章 附錄Appendix 26 | - |
dc.language.iso | zh_TW | - |
dc.title | 檢傷時急診滯留時間風險因子 | zh_TW |
dc.title | Risk Factors of Prolonged Length of Stay in Emergency Department after Triaged | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 杜裕康;陳冠甫 | zh_TW |
dc.contributor.oralexamcommittee | YU-KANG TU;Kuan-Fu Chen | en |
dc.subject.keyword | 急診滯留時間,急診壅塞, | zh_TW |
dc.subject.keyword | Length of stay,Emergency crowding, | en |
dc.relation.page | 31 | - |
dc.identifier.doi | 10.6342/NTU202300967 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-06-09 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。