Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89757
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超zh_TW
dc.contributor.advisorGuang-Chao Chenen
dc.contributor.author林于傑zh_TW
dc.contributor.authorYuchieh Jay Linen
dc.date.accessioned2023-09-20T16:15:04Z-
dc.date.available2025-08-08-
dc.date.copyright2023-09-20-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAguilera, M.O.; Berón, W.; Colombo, M.I. (2012). The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy, 8, 1590–1603.
Angarola, B., & Ferguson, S. M. (2019). Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment. Mol. Biol. Cell. 30:2750–2760
Bagh, M. B., Peng, S., Chandra, G., Zhang, Z., Singh, S. P., Pattabiraman, N., Liu, A., & Mukherjee, A. B. (2017). Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nature communications, 8, 14612.
Ben-Zvi, A., Miller, E. A., & Morimoto, R. I. (2009). Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 14914–14919.
Bernstein, B. W., & Bamburg, J. R. (2010). ADF/cofilin: a functional node in cell biology. Trends in cell biology, 20(4), 187–195.
Brandman, O. & Hegde, R. S. (2016). Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23, 7–15.
Brehme, M. et al. (2014). A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep. 9, 1135–1150.
Burianek, L. E. and Soderling, S. H. (2013). Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin. Cell Dev. Biol. 24, 258-266.
Campellone, K. G. and Welch, M. D. (2010). A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237-251.
Carnell, M., Zech, T., Calaminus, S. D., Ura, S., Hagedorn, M., Johnston, S. A., May, R. C., Soldati, T., Machesky, L. M., & Insall, R. H. (2011). Actin polymerization driven by WASH causes V-ATPase retrieval and vesicle neutralization before exocytosis. The Journal of cell biology, 193(5), 831–839.
Chan, Y. W., Fava, L. L., Uldschmid, A., Schmitz, M. H., Gerlich, D. W., Nigg, E. A., & Santamaria, A. (2009). Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. The Journal of cell biology, 185(5), 859–874.
Choe, Y. J. et al. (2016). Failure of RQC machinery causes protein aggregation and proteotoxic stress. Nature. 531, 191–195.
Clague, M. J., Urbé, S., & Komander, D. (2019). Breaking the chains: deubiquitylating enzyme specificity begets function. Nature reviews. Molecular cell biology, 20(6), 338–352.
Collins, G. A., & Goldberg, A. L. (2017). The Logic of the 26S Proteasome. Cell, 169(5), 792–806.
Collins, M. P., & Forgac, M. (2020). Regulation and function of V-ATPases in physiology and disease. Biochimica et biophysica acta. Biomembranes, 1862(12), 183341.
Conte, C., Baird, M. A., Davidson, M. W., & Griffis, E. R. (2018a). Spindly is required for rapid migration of human cells. Biology open, 7(5), bio033233.
Conte, C.; Griffis, E.R.; Hickson, I.; Perez-Oliva, A.B. (2018b). USP45 and Spindly are part of the same complex implicated in cell migration. Sci. Rep., 8, 14375.
Csizmadia, T., & Lőw, P. (2020). The Role of Deubiquitinating Enzymes in the Various Forms of Autophagy. International journal of molecular sciences, 21(12), 4196.
Dikic I. (2017). Proteasomal and autophagic degradation systems. Annual review of biochemistry, 86, 193–224.
Fujita, N., Hayashi-Nishino, M., Fukumoto, H., Omori, H., Yamamoto, A., Noda, T., & Yoshimori, T. (2008). An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular biology of the cell, 19(11), 4651–4659.
Galluzzi, L., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cecconi, F., Choi, A. M., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Debnath, J., Deretic, V., Dikic, I., Eskelinen, E. L., Fimia, G. M., Fulda, S., Gewirtz, D. A., Green, D. R., Hansen, M., … Kroemer, G. (2017). Molecular definitions of autophagy and related processes. EMBO J., 36(13), 1811–1836.
Gandhi M, Goode BL. Coronin: The Double-Edged Sword of Actin Dynamics. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6492/
Gomez-Pastor, R., Burchfiel, E. T. & Thiele, D. J. (2018). Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 4–19.
Hao, F., Kondo, K., Itoh, T., Ikari, S., Nada, S., Okada, M., & Noda, T. (2018). Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site. Journal of cell science, 131(3), jcs208017.
Hao, Y.-H., Doyle, J. M., Ramanathan, S., Gomez, T. S., Jia, D., Xu, M., Chen, Z. J., Billadeau, D. D., Rosen, M. K. and Potts, P. R. (2013). Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell, 152, 1051-1064.
Hao, Y.-H., Fountain, M. D., Jr, Tacer, K. F., Xia, F., Bi, W., Kang, S.-H. L., Patel, A., Rosenfeld, J. A., Le Caignec, C., Isidor, B. et al. (2015). USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol. Cell 59, 956-969
Hurtado-Lorenzo, A., Skinner, M., El Annan, J., Futai, M., Sun-Wada, G. H., Bourgoin, S., Casanova, J., Wildeman, A., Bechoua, S., Ausiello, D. A., Brown, D., & Marshansky, V. (2006). V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nature cell biology, 8(2), 124–136.
Itakura, E., Kishi-Itakura, C., & Mizushima, N. (2012). The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosom /lysosomes. Cell, 151(6), 1256–1269.
Jia, D., Gomez, T. S., Metlagel, Z., Umetani, J., Otwinowski, Z., Rosen, M. K., & Billadeau, D. D. (2010). WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10442–10447.
Jia, D., Gomez, T. S., Billadeau, D. D. and Rosen, M. K. (2012). Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol. Biol. Cell 23, 2352-2361.
Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M., & Kim, D. H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell, 20(7), 1992–2003.
Karanasios, E., Walker, S. A., Okkenhaug, H., Manifava, M., Hummel, E., Zimmermann, H., Ahmed, Q., Domart, M. C., Collinson, L., & Ktistakis, N. T. (2016). Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nature communications, 7, 12420.
Kast, D.J., Zajac, A.L., Holzbaur, E.L., Ostap, E.M., and Dominguez, R. (2015). WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 25, 1791–1797.
Kaushik, S., & Cuervo, A. M. (2018). The coming of age of chaperone-mediated autophagy. Nature reviews. Molecular cell biology, 19(6), 365–381.
Kim, J., Kundu, M., Viollet, B., & Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology, 13(2), 132–141.
Kim, J., Kim, Y. C., Fang, C., Russell, R. C., Kim, J. H., Fan, W., Liu, R., Zhong, Q., & Guan, K. L. (2013a). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152(1-2), 290–303.
Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. (2013b). Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355.
Klaips, C. L., Jayaraj, G. G. & Hartl, F. U. (2017). Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 217, 51–63.
Koronakis, V., Hume, P. J., Humphreys, D., Liu, T., Horning, O., Jensen, O. N. and McGhie, E. J. (2011). WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc. Natl. Acad. Sci. USA 108, 14449-14454.
Lamb, C. A., Yoshimori, T., & Tooze, S. A. (2013). The autophagosome: origins unknown, biogenesis complex. Nature reviews. Molecular cell biology, 14(12), 759–774.
Lee, J. W., Park, S., Takahashi, Y., & Wang, H. G. (2010). The association of AMPK with ULK1 regulates autophagy. PloS one, 5(11), e15394.
Li, K., Wang, Q., Bian, H., Chen, Z., He, H., Zhao, X., & Gong, P. (2022a). Comprehensive Analysis Reveals USP45 as a Novel Putative Oncogene in Pan-Cancer. Frontiers in molecular biosciences, 9, 886904.
Li, Y., Li, S., & Wu, H. (2022b). Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 11(5), 851.
Linares, J.F.; Duran, A.; Yajima, T.; Pasparakis, M.; Moscat, J.; Diaz-Meco, M.T. (2013). K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell, 51, 283–296.
Liu, L., Chen, C., Liu, P., Li, J., Pang, Z., Zhu, J., Lin, Z., Zhou, H., Xie, Y., Lan, T., Chen, Z. S., Zeng, Z., & Fang, W. (2023). MYH10 combines with MYH9 to recruit USP45 by deubiquitinating Snail and promotes serous ovarian cancer carcinogenesis, progression, and cisplatin resistance. Advanced science, 10(14), e2203423.
Liu, R., Abreu-Blanco, M. T., Barry, K. C., Linardopoulou, E. V., Osborn, G. E. and Parkhurst, S. M. (2009). Wash functions downstream of Rho and links linea and branched actin nucleation factors. Development 136, 2849-2860.
Machesky, L. M., Mullins, R. D., Higgs, H. N., Kaiser, D. A., Blanchoin, L., May, R. C., Hall, M. E., & Pollard, T. D. (1999). Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3739–3744.
Martina, J. A., & Puertollano, R. (2013). Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. The Journal of cell biology, 200(4), 475–491.
McEwan, D.G.; Dikic, I. (2014). Cullins keep autophagy under control. Dev. Cell, 31, 675–676.
McEwan, D. G., Popovic, D., Gubas, A., Terawaki, S., Suzuki, H., Stadel, D., Coxon, F. P., Miranda de Stegmann, D., Bhogaraju, S., Maddi, K., Kirchof, A., Gatti, E., Helfrich, M. H., Wakatsuki, S., Behrends, C., Pierre, P., & Dikic, I. (2015). PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Molecular cell, 57(1), 39–54.
McGuire, C. M., & Forgac, M. (2018). Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling. The Journal of biological chemistry, 293(23), 9113–9123.
Meller, A., & Shalgi, R. (2021). The aging proteostasis decline: From nematode to human. Experimental cell research, 399(2), 112474.
Metzger, M. B., Hristova, V. A., & Weissman, A. M. (2012). HECT and RING finger families of E3 ubiquitin ligases at a glance. Journal of cell science, 125(Pt 3), 531–537.
Mevissen, T. E. T. & Komander, D. (2017). Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem. 86, 159–192.
Mi, N.; Chen, Y.; Wang, S.; Chen, M.; Zhao, M.; Yang, G.; Ma, M.; Su, Q.; Luo, S.; Shi, J. (2015). CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol., 17, 1112–1123.
Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M. D., Klionsky, D. J., Ohsumi, M., & Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature, 395(6700), 395–398.
Morel, N., Dedieu, J. C., & Philippe, J. M. (2003). Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. Journal of cell science, 116(Pt 23), 4751–4762.
Murali, A., Shin, J., Yurugi, H., Krishnan, A., Akutsu, M., Carpy, A., Macek, B., & Rajalingam, K. (2017). Ubiquitin-dependent regulation of Cdc42 by XIAP. Cell death & disease, 8(6), e2900.
Nagel, B. M., Bechtold, M., Rodriguez, L. G. and Bogdan, S. (2017). Drosophila WASH is required for integrin-mediated cell adhesion, cell motility and lysosomal neutralization. J. Cell Sci. 130, 344-359.
Nair, U., Jotwani, A., Geng, J., Gammoh, N., Richerson, D., Yen, W. L., Griffith, J., Nag, S., Wang, K., Moss, T., Baba, M., McNew, J. A., Jiang, X., Reggiori, F., Melia, T. J., & Klionsky, D. J. (2011). SNARE proteins are required for macroautophagy. Cell, 146(2), 290–302.
Orsi, A., Razi, M., Dooley, H. C., Robinson, D., Weston, A. E., Collinson, L. M., & Tooze, S. A. (2012). Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Molecular biology of the cell, 23(10), 1860–1873
Papinski, D., Schuschnig, M., Reiter, W., Wilhelm, L., Barnes, C. A., Maiolica, A., Hansmann, I., Pfaffenwimmer, T., Kijanska, M., Stoffel, I., Lee, S. S., Brezovich, A., Lou, J. H., Turk, B. E., Aebersold, R., Ammerer, G., Peter, M., & Kraft, C.(2014). Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Molecular cell, 53(3), 471–483. https://doi.org/10.1016/j.molcel.2013.12.011
Park, L., Thomason, P. A., Zech, T., King, J. S., Veltman, D. M., Carnell, M., Ura, S., Machesky, L. M., & Insall, R. H. (2013). Cyclical action of the WASH complex: FAM21 and capping protein drive WASH recycling, not initial recruitment. Developmental cell, 24(2), 169–181
Parra, K. J., & Kane, P. M. (1998). Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Molecular and cellular biology, 18(12), 7064–7074.
Perez-Oliva, A. B., Lachaud, C., Szyniarowski, P., Muñoz, I., Macartney, T., Hickson, I., Rouse, J., & Alessi, D. R. (2015). USP45 deubiquitylase controls ERCC1-XPF endonuclease-mediated DNA damage responses. The EMBO journal, 34(3), 326–343.
Pohl, C., & Dikic, I. (2019). Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 366(6467), 818-822
Priya, R., Wee, K., Budnar, S., Gomez, G. A., Yap, A. S., & Michael, M. (2016). Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell cycle (Georgetown, Tex.), 15(22), 3033–3041.
Puertollano, R., Ferguson, S. M., Brugarolas, J., & Ballabio, A. (2018). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. The EMBO journal, 37(11), e98804.
Puri, C., Renna, M., Bento, C. F., Moreau, K., & Rubinsztein, D. C. (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6), 1285–1299.
Rebsamen, M., L. Pochini, T. Stasyk, M.E. de Araujo, M. Galluccio, R.K. Kandasamy, B. Snijder, A. Fauster, E.L. Rudashevskaya, M. Bruckner et al. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 519:477–481.
Rohatgi, R., Ho, H.-Y. H. and Kirschner, M. W. (2000). Mechanism of N-Wasp activation by Cdc42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299-1310.
Rubinsztein, D. C., Marino, G. & Kroemer, G. (2011). Autophagy and aging. Cell 146, 682–695.
Rusten TE, Lindmo K, Juhász G, Sass M, Seglen PO, Brech A, Stenmark H. (2004). Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell. 7(2):179-92.
Saci, A., Cantley, L. C., & Carpenter, C. L. (2011). Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Molecular cell, 42(1), 50–61.
Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A. L., Nada, S., & Sabatini, D. M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 141(2), 290–303.
Sautin, Y. Y., Lu, M., Gaugler, A., Zhang, L., & Gluck, S. L. (2005). Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Molecular and cellular biology, 25(2), 575–589.
Schuck, S. (2020). Microautophagy-distinct molecular mechanisms handle cargoes of many sizes. Journal of cell science, 133(17)
Settembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S. U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D. C., & Ballabio, A. (2011). TFEB links autophagy to lysosomal biogenesis. Science (New York, N.Y.), 332(6036), 1429–1433.
Settembre, C., Zoncu, R., Medina, D. L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M. C., Facchinetti, V., Sabatini, D. M., & Ballabio, A. (2012). A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal, 31(5), 1095–1108.
Sies, H., Berndt, C. & Jones, D. P. (2017). Oxidative stress. Annu. Rev. Biochem. 86, 715–748.
Soto, C., Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340.
Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.
Swatek, K. N., and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399–422.
Tang, H. W., Wang, Y. B., Wang, S. L., Wu, M. H., Lin, S. Y., & Chen, G. C. (2011). Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. The EMBO journal, 30(4), 636–651.
Tan, J. M., Wong, E. S., Kirkpatrick, D. S., Pletnikova, O., Ko, H. S., Tay, S. P., Ho, M. W., Troncoso, J., Gygi, S. P., Lee, M. K., Dawson, V. L., Dawson, T. M., & Lim, K. L. (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human molecular genetics, 17(3), 431–439.
Taylor, R. C., & Dillin, A. (2011). Aging as an event of proteostasis collapse. Cold Spring Harbor perspectives in biology, 3(5).
Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G. H., Wada, Y., & Futai, M. (2003). From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. The Journal of biological chemistry, 278(24), 22023–22030.
Tu, X., Li, C., Sun, W., Tian, X., Li, Q., Wang, S., Ding, X., & Huang, Z. (2023). Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers, 15(3), 930.
Tumbarello, D. A., Waxse, B. J., Arden, S. D., Bright, N. A., Kendrick-Jones, J., & Buss, F. (2012). Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nature cell biology, 14(10), 1024–1035.
van Bommel, B., Konietzny, A., Kobler, O., Bär, J., & Mikhaylova, M. (2019). F-actin patches associated with glutamatergic synapses control positioning of dendritic lysosomes. The EMBO journal, 38(15), e101183.
Wang HR, Ogunjimi AA, Zhang Y, Ozdamar B, Bose R, Wrana JL. (2006). Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol. 406:437-47.
Xia, P.; Wang, S.; Du, Y.; Zhao, Z.; Shi, L.; Sun, L.; Huang, G.; Ye, B.; Li, C.; Dai, Z.; et al. (2013). WASH inhibit autophagy through suppression of Beclin 1 ubiquitination. EMBO J., 32, 2685–2696.
Yin, Z., Popelka, H., Lei, Y., Yang, Y., & Klionsky, D. J. (2020). The Roles of Ubiquitin in Mediating Autophagy. Cells, 9(9), 2025.
Zaffagnini, G., & Martens, S. (2016). Mechanisms of selective autophagy. Journal of molecular biology, 428(9 Pt A), 1714–1724.
Zhao, L.; Wang, X.; Yu, Y.; Deng, L.; Chen, L.; Peng, X.; Jiao, C.; Gao, G.; Tan, X.; Pan, W.; et al. (2018). OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J. Biol. Chem., 293, 4883–4892.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89757-
dc.description.abstract蛋白質恆定對細胞健康至關重要,是由泛素-蛋白酶體系統(UPS)和細胞自噬維持。自噬是一種具演化保留性的過程,藉由與溶酶體融合,降解包覆其中的不正常折疊蛋白或受損胞器。近年來,越來越多的研究顯示,衰老與自噬、溶酶體功能下降相關。然而,詳細的機制和有效的療法仍然不明。本研究發現去泛素化酵素dUSP45/USP45的新功能,它在果蠅和哺乳動物系統中調節自噬和溶酶體活性。我們的發現USP45使得溶酶體上的液胞型ATP酶水平下降,從而降低了溶酶體的酸化程度。與過去關於USP45潛在相互作用蛋白的質譜分析報告一致,我們的免疫沉澱結果顯示,Coronin1B(Coro1B)與USP45相互作用。此外,USP45介導了Coro1B的去泛素化,並維持其蛋白穩定性。Coro1B已知是肌動蛋白之調節蛋白,因此我們在USP45剔除的細胞中發現了共定位的溶酶體與肌動蛋白斑塊結構。進一步我們的數據也顯示,肌動蛋白聚合抑制劑Latrunculin A(LatA)和CK666會破壞液胞型ATP酶和溶酶體的共定位,進一步支持肌動蛋白在自噬調控中的作用。而Latrunculin A(LatA)沖刷實驗證明,通過置換正常培養基,可以顯著恢復USP45敲除細胞中的溶酶體活性以及肌動蛋白和溶酶體的共定位。有趣的是,我們發現,USP45敲除所導致的液胞型ATP酶水平升高取決於WASP,而不是WASH。如同我們的推測,Coro1B在抑制細胞自噬和溶酶體上的液胞型ATP酶含量,發揮了與USP45類似的作用。為了評估USP45的生理功能,我們進行了RT-PCR和西方墨點分析,顯示dUSP45 mRNA水平與成熟的Cathepsin蛋白含量在衰老過程中呈現負相關。此外,通過敲除dUSP45,可以顯著恢復HTT-多谷氨酰胺(polyQ)所引發的退化。我們的研究揭示了USP45在藉由肌動蛋白對自噬及溶酶體進行調節的新功能,以及其對溶酶體液胞型ATP酶水平的影響,並暗示USP45可能成為與衰老相關疾病的潛在治療目標。zh_TW
dc.description.abstractProteostasis is beneficial to cellular health, which is maintained by the ubiquitin-proteasome system (UPS) and autophagy. As an evolutionary conserved process, autophagy degrades engulfed material including misfolded protein or damaged organelles through fusion with lysosome. Recent years, increasing studies describing that aging is associated with function decline of autophagy/lysosome. However, the detail mechanism and efficient therapy remain to be discovered. This study identifies the novel function of deubiquitinase, dUSP45/USP45, which modulates autophagy and lysosomal activity in Drosophila and mammalian systems. Our findings reveal that USP45 attenuates V-ATPase level on lysosome, leading to reduced lysosomal acidification. Consistent with previous report which characterized potential interacting protein of USP45 in MS analysis, our immunoprecipitation results show Coronin1B (Coro1B) interacts with USP45. Additionally, USP45 mediates deubiquitination of Coro1B and maintains its protein stability. Coro1B is regarded as actin dynamics regulator protein, we thus find the actin patch-like structure colocalized with lysosome in USP45-depleted cell. Moreover, our data show that colocalization of V-ATPase and lysosome is disrupted by actin polymerization inhibitors, Latrunculin A (LatA) and CK666, further supporting the role of actin dynamics in autophagy regulation. Furthermore, Latrunculin A (LatA) washout experiments demonstrate that lysosomal activity and actin-lysosome colocalization are dramatically restored by replenishment of normal medium in USP45 knockdown cells. Intriguingly, we find that USP45 knockdown-induced elevation of V-ATPase level on lysosome is dependent on WASP, rather than WASH. As our speculation, Coro1B plays a similar role of USP45 in inhibiting autophagy flux and V-ATPase level on lysosome. To evaluate the physiological function of USP45, we conduct RT-PCR and western blot analyses, revealing a negative correlation between dUSP45 mRNA levels and mature cathepsin protein levels during aging. Furthermore, HTT-polygluatmine (polyQ)-induced degeneration are significantly recovered by knockdown dUSP45. Our study unravels the novel function of USP45 in autophagy/lysosome modulation through actin dynamics and its impact on lysosomal V-ATPase level and suggests USP45 as potential therapeutic target for age-related diseases.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:15:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-20T16:15:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Chapter 1: Introduction 1
1-1. Proteostasis 1
1-2. Autophagy 3
1-2-1. Overvie 3
1-2-2. Mechanism of autophagy 4
1-2-3. Lysosome 6
1-3. Ubiquitination 9
1-3-1. Overview 9
1-3-2. Deuibiquitinase 9
1-3-3. DUB in autophagy-lysosome mechanism 10
1-3-4. USP45 11
1-4. Actin dynamics and regulation 13
1-4-1. Overview 13
1-4-2. Actin polymerization and depolymerization 14
1-4-3. Actin in autophagy-lysosome 16
Chapter 2: Material & methods 18
Chapter 3: Results 26
3-1. dUSP45 is a negative regulator of autophagy 26
3-2. dUSP45 inhibits lysosome acidification by disrupting V-ATPase translocation to lysosomes 28
3-3. Mammalian USP45 negatively regulates autophagy 30
3-4. USP45 interacts with and regulates the protein stability of Coronin1B 33
3-5. USP45 knockdown promotes actin polymerization at lysosome which is required for V-ATPase localization at lysosome and acidification 34
3-6. Coro1B inhibits autophagy and lysosomal function 37
3-7. PolyQ-induced degeneration could be rescued by depleting dUSP45 39
Chapter 4: Discussion 42
References 48
Figures 57
Appendix 110
-
dc.language.isoen-
dc.subject細胞自噬zh_TW
dc.subject去泛素化酵素zh_TW
dc.subject溶酶體zh_TW
dc.subject肌動蛋白動態性zh_TW
dc.subject液胞型ATP酶zh_TW
dc.subjectlysosomeen
dc.subjectUSP45en
dc.subjectactin dynamicsen
dc.subjectautophagyen
dc.subjectV-ATPaseen
dc.title去泛素化酵素USP45藉由調節肌動蛋白之動態性以調控細胞自噬及溶酶體的活性zh_TW
dc.titleDeubiquitinase USP45 regulates autophagy/lysosome activity by modulating actin dynamicsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳瑞華;桑自剛;姚季光;詹智強;劉雅雯zh_TW
dc.contributor.oralexamcommitteeRuey-Hwa Chen;Tzu-Kang Sang;Chi-Kuang Yao;Chih-Chiang Chan;Ya-Wen Liuen
dc.subject.keyword細胞自噬,溶酶體,去泛素化酵素,肌動蛋白動態性,液胞型ATP酶,zh_TW
dc.subject.keywordautophagy,lysosome,USP45,actin dynamics,V-ATPase,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202303540-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2025-08-08-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved