請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晉玄 | zh_TW |
| dc.contributor.advisor | Ching-Hsuan Lin | en |
| dc.contributor.author | 謝毅 | zh_TW |
| dc.contributor.author | Yi Hsieh | en |
| dc.date.accessioned | 2023-09-20T16:09:04Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | 1. Berman, J., Candida albicans. Current biology, 2012. 22(16): p. R620-R622.
2. Kadosh, D. and V. Mundodi, A re-evaluation of the relationship between morphology and pathogenicity in Candida species. Journal of fungi, 2020. 6(1): p. 13. 3. Seneviratne, C., L. Jin, and L. Samaranayake, Biofilm lifestyle of Candida: a mini review. Oral diseases, 2008. 14(7): p. 582-590. 4. Schulze, J. and U. Sonnenborn, Yeasts in the gut: from commensals to infectious agents. Deutsches Ärzteblatt International, 2009. 106(51-52): p. 837. 5. Akpan, A. and R. Morgan, Oral candidiasis. Postgraduate medical journal, 2002. 78(922): p. 455-459. 6. Bassetti, M., et al., What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. Journal of antimicrobial chemotherapy, 2018. 73(suppl_1): p. i14-i25. 7. Rai, L.S., et al., Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal biology reviews, 2018. 32(1): p. 10-19. 8. Jacobsen, I.D., et al., Candida albicans dimorphism as a therapeutic target. Expert review of anti-infective therapy, 2012. 10(1): p. 85-93. 9. Saville, S.P., et al., Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic cell, 2003. 2(5): p. 1053-1060. 10. Filler, S.G. and D.C. Sheppard, Fungal invasion of normally non-phagocytic host cells. PLoS pathogens, 2006. 2(12): p. e129. 11. Lohse, M.B. and A.D. Johnson, White–opaque switching in Candida albicans. Current opinion in microbiology, 2009. 12(6): p. 650-654. 12. Cassone, A., P. Sullivan, and M. Shepherd, N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans. Microbiologica, 1985. 8(1): p. 85-99. 13. Herrero de Dios, C., et al., The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence. Current Protein and Peptide Science, 2010. 11(8): p. 693-703. 14. Saporito-Irwin, S.M., et al., PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Molecular and cellular biology, 1995. 15(2): p. 601-613. 15. Banerjee, M., et al., UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular biology of the cell, 2008. 19(4): p. 1354-1365. 16. Chen, H., et al., The regulation of hyphae growth in Candida albicans. Virulence, 2020. 11(1): p. 337-348. 17. Hogan, D.A. and P. Sundstrom, The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future microbiology, 2009. 4(10): p. 1263-1270. 18. Davis, D., Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Current genetics, 2003. 44: p. 1-7. 19. Román, E., et al., The HOG MAPK pathway in Candida albicans: More than an osmosensing pathway. International microbiology, 2020. 23: p. 23-29. 20. Chen, J., Q. Wang, and J.-Y. Chen, CEK2, a Novel MAPK from Candida albicans Complement the Mating Defect of fus3/kss1 Mutant. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica, 2000. 32(3): p. 299-304. 21. Giacometti, R., et al., Catalytic isoforms Tpk1 and Tpk2 of Candida albicans PKA have non‐redundant roles in stress response and glycogen storage. Yeast, 2009. 26(5): p. 273-285. 22. Lin, C.-J. and Y.-L. Chen, Conserved and divergent functions of the cAMP/PKA signaling pathway in Candida albicans and Candida tropicalis. Journal of fungi, 2018. 4(2): p. 68. 23. Lindsay, A.K., et al., Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryotic cell, 2012. 11(10): p. 1219-1225. 24. Nadeem, S.G., et al., Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. 2013. 25. Monge, R.A., et al., The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006. 152(4): p. 905-912. 26. Murad, A.M.A., et al., NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. The EMBO journal, 2001. 20(17): p. 4742-4752. 27. Braun, B.R. and A.D. Johnson, Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science, 1997. 277(5322): p. 105-109. 28. Su, C., J. Yu, and Y. Lu, Hyphal development in Candida albicans from different cell states. Current genetics, 2018. 64: p. 1239-1243. 29. Khalaf, R.A. and R.S. Zitomer, The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics, 2001. 157(4): p. 1503-1512. 30. Zeidler, U., et al., UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS yeast research, 2009. 9(1): p. 126-142. 31. Gong, J., et al., The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis. Acta biochimica et biophysica Sinica, 2019. 51(5): p. 463-470. 32. Banerjee, M., et al., Filamentation is associated with reduced pathogenicity of multiple non-albicans Candida species. Msphere, 2019. 4(5): p. e00656-19. 33. Lackey, E., et al., Comparative evolution of morphological regulatory functions in Candida species. Eukaryotic cell, 2013. 12(10): p. 1356-1368. 34. Xie, J., et al., N-acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution. Eukaryotic cell, 2012. 11(6): p. 773-782. 35. Brown Jr, D.H., et al., Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular microbiology, 1999. 34(4): p. 651-662. 36. Zhang, Q., et al., Regulation of filamentation in the human fungal pathogen C andida tropicalis. Molecular microbiology, 2016. 99(3): p. 528-545. 37. Silva, S., et al., In vitro biofilm activity of non-Candida albicans Candida species. Current microbiology, 2010. 61: p. 534-540. 38. Douglas, L.J., Candida biofilms and their role in infection. Trends in microbiology, 2003. 11(1): p. 30-36. 39. Kojic, E.M. and R.O. Darouiche, Candida infections of medical devices. Clinical microbiology reviews, 2004. 17(2): p. 255-267. 40. Gulati, M. and C.J. Nobile, Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and infection, 2016. 18(5): p. 310-321. 41. Cavalheiro, M. and M.C. Teixeira, Candida biofilms: threats, challenges, and promising strategies. Frontiers in medicine, 2018. 5: p. 28. 42. Nobile, C.J., et al., Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS pathogens, 2006. 2(7): p. e63. 43. Lohse, M.B., et al., Development and regulation of single-and multi-species Candida albicans biofilms. Nature reviews microbiology, 2018. 16(1): p. 19-31. 44. Uppuluri, P., et al., Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS pathogens, 2010. 6(3): p. e1000828. 45. Uppuluri, P., et al., The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryotic cell, 2010. 9(10): p. 1531-1537. 46. Araújo, D., M. Henriques, and S. Silva, Portrait of Candida species biofilm regulatory network genes. Trends in microbiology, 2017. 25(1): p. 62-75. 47. García-Sánchez, S., et al., Global roles of Ssn6 in Tup1-and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Molecular biology of the cell, 2005. 16(6): p. 2913-2925. 48. Nobile, C.J., et al., A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell, 2012. 148(1-2): p. 126-138. 49. Mancera, E., et al., Evolution of the complex transcription network controlling biofilm formation in Candida species. Elife, 2021. 10: p. e64682. 50. Min, K., et al., Genetic analysis of NDT80 family transcription factors in Candida albicans using new CRISPR-Cas9 approaches. Msphere, 2018. 3(6): p. e00545-18. 51. Winter, E., The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiology and molecular biology reviews, 2012. 76(1): p. 1-15. 52. Chu, S. and I. Herskowitz, Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Molecular cell, 1998. 1(5): p. 685-696. 53. Tung, K.-S., E.-J.E. Hong, and G.S. Roeder, The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proceedings of the national academy of sciences, 2000. 97(22): p. 12187-12192. 54. Naseem, S., et al., Regulation of hyphal growth and N-acetylglucosamine catabolism by two transcription factors in Candida albicans. Genetics, 2017. 206(1): p. 299-314. 55. Su, C., Y. Lu, and H. Liu, N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi. Nature communications, 2016. 7(1): p. 12916. 56. Chen, C.-G., et al., Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans. Fungal genetics and biology, 2009. 46(9): p. 714-720. 57. Chen, C.-G., et al., CaNdt80 is involved in drug resistance in Candida albicans by regulating CDR1. Antimicrobial agents and chemotherapy, 2004. 48(12): p. 4505-4512. 58. Sellam, A., et al., Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans. Eukaryotic cell, 2010. 9(4): p. 634-644. 59. Branco, J., et al., Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clinical microbiology and infection, 2017. 23(8): p. 575. e1-575. e8. 60. Sellam, A., F. Tebbji, and A. Nantel, Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans. Eukaryotic cell, 2009. 8(8): p. 1174-1183. 61. Khan, F., et al., Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. Biofouling, 2021. 37(6): p. 626-655. 62. Branco, J., et al., The transcription factor Ndt80 is a repressor of Candida parapsilosis virulence attributes. Virulence, 2021. 12(1): p. 601-614. 63. Katz, M.E. and S. Cooper, Extreme diversity in the regulation of Ndt80-like transcription factors in fungi. G3: Genes, Genomes, Genetics, 2015. 5(12): p. 2783-2792. 64. Yang, Y.-L., et al., Fluconazole resistance rate of Candida species from different regions and hospital types in Taiwan. Journal of microbiology, Immunology, and Infection= Wei Mian yu gan ran za zhi, 2003. 36(3): p. 187-191. 65. Ruan, S.-Y. and P.-R. Hsueh, Invasive candidiasis: an overview from Taiwan. Journal of the formosan medical association, 2009. 108(6): p. 443-451. 66. Berkow, E.L. and S.R. Lockhart, Fluconazole resistance in Candida species: a current perspective. Infection and drug resistance, 2017: p. 237-245. 67. Ann Chai, L.Y., D.W. Denning, and P. Warn, Candida tropicalis in human disease. Critical reviews in microbiology, 2010. 36(4): p. 282-298. 68. Silva, S., et al., Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS microbiology reviews, 2012. 36(2): p. 288-305. 69. de Souza, C.M., et al., Adhesion and biofilm formation by the opportunistic pathogen Candida tropicalis: what do we know? Canadian Journal of Microbiology, 2023. 70. Lee, P.Y., et al., Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments), 2012(62): p. e3923. 71. Walther, A. and J. Wendland, An improved transformation protocol for the human fungal pathogen Candida albicans. Current genetics, 2003. 42: p. 339-343. 72. Wiggins, H.L. and J.Z. Rappoport, An agarose spot assay for chemotactic invasion. Biotechniques, 2010. 48(2): p. 121-124. 73. Tseng, Y.-K., et al., Evaluation of biofilm formation in Candida tropicalis using a silicone-based platform with synthetic urine medium. Microorganisms, 2020. 8(5): p. 660. 74. Aloy, P., et al., The relationship between sequence and interaction divergence in proteins. Journal of molecular biology, 2003. 332(5): p. 989-998. 75. Taschdjian, C.L., J.J. BURCHALL, and P.J. Kozinn, Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA journal of diseases of children, 1960. 99(2): p. 212-215. 76. Bockmühl, D.P., et al., Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Molecular microbiology, 2001. 42(5): p. 1243-1257. 77. Zheng, X., Y. Wang, and Y. Wang, Hgc1, a novel hypha‐specific G1 cyclin‐related protein regulates Candida albicans hyphal morphogenesis. The EMBO journal, 2004. 23(8): p. 1845-1856. 78. Lassak, T., et al., Target specificity of the Candida albicans Efg1 regulator. Molecular microbiology, 2011. 82(3): p. 602-618. 79. Corner, B.E. and P. Magee, Candida pathogenesis: unravelling the threads of infection. Current biology, 1997. 7(11): p. R691-R694. 80. Wu, Y., et al., A genome-wide transcriptional analysis of yeast-hyphal transition in Candida tropicalis by RNA-Seq. PloS one, 2016. 11(11): p. e0166645. 81. Butler, G., et al., Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009. 459(7247): p. 657-662. 82. Sudbery, P.E., Growth of Candida albicans hyphae. Nature reviews microbiology, 2011. 9(10): p. 737-748. 83. Cao, C., et al., Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans. Molecular microbiology, 2017. 105(1): p. 46-64. 84. Sharkey, L.L., et al., HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. Journal of bacteriology, 1999. 181(17): p. 5273-5279. 85. Li, Z. and K. Nielsen, Morphology changes in human fungal pathogens upon interaction with the host. Journal of fungi, 2017. 3(4): p. 66. 86. Shivarathri, R., et al., The fungal histone acetyl transferase Gcn5 controls virulence of the human pathogen Candida albicans through multiple pathways. Scientific reports, 2019. 9(1): p. 9445. 87. Pedreno, Y., et al., Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases hypha formation and infectivity without affecting resistance to oxidative stress. Microbiology, 2007. 153(5): p. 1372-1381. 88. Alby, K., D. Schaefer, and R.J. Bennett, Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans. Nature, 2009. 460(7257): p. 890-893. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89734 | - |
| dc.description.abstract | 熱帶念珠菌(Candida tropicalis)是一種臨床上常見的伺機性病原真菌,具有非常多不同的細胞型態,例如酵母菌(yeast)、菌絲(hyphae)型態等,其中菌絲型態在以往的研究也被提及與念珠菌的致病能力具有關聯性,包括幫助念珠菌的細胞入侵組織、形成生物膜等,因此本實驗室參考以往對於白色念珠菌的研究,探討在調控白色念珠菌的菌絲與生物膜生成相關的 6 個重要同源基因是否也同樣在熱帶念珠菌中有類似或是不同的現象。其中我們發現轉錄因子 NDT80 在白色念珠菌中與熱帶念珠菌中在胺基酸序列、生物膜生成、以及致病能力方面都與白色念珠菌有相同現象,然而調控菌絲生成的能力表現出完全相反的功能。在白色念珠菌中 NDT80 為菌絲生成的正向調控者(activator),然而在熱帶念珠菌中則是菌絲生成的負向調控者(repressor)。因此我希望藉由RNA-seq的方式,探討熱帶念珠菌NDT80突變株在調控菌絲生成的相關路徑以及機制是否與白色念珠菌有所不同。本研究分別將熱帶念珠菌野生株以及NDT80突變株在四種不同的固態培養基( YPD、Serum、RPMI1640、Spider )進行點盤以及液態培養基觀察菌絲生成能力,發現在四種培養基中相較於野生株,NDT80突變株都表現出大量生成菌絲的現象。另外我們也將白色念珠菌的NDT80基因送入熱帶念珠菌的NDT80突變株進行觀察,構築Ctndt80Δ::CaNDT80菌株,發現原先在白色念珠菌中扮演正向調控者的NDT80並無法在熱帶念珠菌中同樣去促進菌絲生成,代表在兩個物種間NDT80影響菌絲生成並非是完全相同的調控路徑。藉由基因表現分析,發現NDT80突變株中其他與菌絲生成相關的重要基因有顯著上調的現象。RNA-seq結果分析完成後,藉由Gene Ontology分析將熱帶念珠菌NDT80突變株中表現量改變的基因分群進行初步篩選並與前人研究比較後,發現有7個基因可能與NDT80影響到菌絲生成有關,這些基因可能牽涉到多個重要調控路徑,例如cAMP/PKA訊號途徑或是法尼醇(farnesol)等多個參與的菌絲生成路徑等,未來也需要進一步驗證找出NDT80可能具體參與到的路徑以及在路徑中的功能為何。 | zh_TW |
| dc.description.abstract | Candida tropicalis, a commonly encountered opportunistic pathogenic fungus in clinical settings, exhibits various cell morphologies including yeast and hyphal forms. The hyphal form has been associated with the pathogenic ability of Candida species, facilitating tissue invasion and biofilm formation. Therefore, inspired by previous studies on Candida albicans, our laboratory aimed to investigate whether six important homologous genes involved in regulating hyphal and biofilm formation in C. albicans show similar or distinct patterns in C. tropicalis. Among them, the transcription factor NDT80 in C. tropicalis exhibited similarities to C. albicans regarding amino acid sequence, biofilm formation, and pathogenicity. However, its role in regulating hyphal formation showed an opposite function. In C. albicans, NDT80 acts as a positive regulator (activator) of hyphal formation, whereas in C. tropicalis, it acts as a negative regulator (repressor). Hence, I aimed to investigate, through RNA-seq analysis, whether the pathways and mechanisms involved in regulating hyphal formation in the NDT80 mutant strain of C. tropicalis differ from those in C. albicans. In this study, the wild-type strain and NDT80 mutant strain of C. tropicalis were cultured on four different solid media (YPD, Serum, RPMI1640, Spider) and in liquid media to observe their hyphal formation ability. Compared to the wild-type strain, the NDT80 mutant strain exhibited enhanced hyphal formation in all four media. Additionally, we introduced the NDT80 gene from C. albicans into the NDT80 mutant strain of C. tropicalis, creating the Ctndt80Δ::CaNDT80 strain. Interestingly, the NDT80 gene, which functions as a positive regulator of hyphal formation in C. albicans, failed to promote hyphal formation in C. tropicalis. This indicates that the regulation of hyphal formation by NDT80 is not entirely conserved between these two species. Furthermore, gene expression analysis revealed significant upregulation of other important genes related to hyphal formation in the NDT80 mutant strain. After analyzing the RNA-seq results, a preliminary screening of differentially expressed genes in the NDT80 mutant strain of C. tropicalis was performed using Gene Ontology analysis. Comparison with previous studies identified seven genes that are potentially associated with NDT80-mediated regulation of hyphal formation. These genes may be involved in multiple critical regulatory pathways, such as the cAMP/PKA signaling pathway or the farnesol pathway, which are involved in hyphal formation. Further investigations are required to validate the specific pathways and functions in which NDT80 may be involved. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:09:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:09:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 VIII 表目錄 IX 文獻回顧 1 第一節 念珠菌以及臨床症狀 1 第二節 念珠菌之菌絲生成 2 第三節 念珠菌之生物膜生成 4 第四節 NDT80基因之介紹 6 第五節 熱帶念珠菌之菌絲生成及調控 8 實驗目的 9 材料與方法 10 實驗結果 17 1. 比較熱帶念珠菌Ndt80與白色念珠菌Ndt80、近平滑念珠菌Ndt80以及釀酒酵母Ndt80之胺基酸序列差異 17 2. Candt80在四種不同固態培養基上(YPD、serum、RPMI1640、Spider)菌絲生成能力相較野生株都有缺陷;Ctndt80突變株則是在四種培養基都大量生成菌絲 17 3. Ctndt80在誘導熱帶念珠菌菌絲生成的環境下會大量生成菌絲 18 4. Ctndt80在非誘導熱帶念珠菌菌絲生成的環境下也會大量生成菌絲 19 5. Ctndt80Δ::CaNDT80能夠確實表現CaNDT80,並發現CaNDT80能夠有效造成Ctndt80突變株之菌絲以及生物膜生成能力現象的回補 20 6. 定量即時連鎖聚合酶反應分析Ctndt80突變株之菌絲生成相關基因表現量有顯著提升 22 7. 透過Gene ontology分析CtNDT80可能潛在的調控基因 23 8. 經由與前人研究比較找出7個菌絲生成之重要基因可能與CtNDT80影響菌絲生成有關 24 討論 26 未來研究方向 32 圖表 33 參考文獻 52 附錄 62 附錄一、RNA-seq分析顯著差異之菌絲生成相關基因 62 附錄二、本實驗培養基之配方 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 熱帶念珠菌 | zh_TW |
| dc.subject | 白色念珠菌 | zh_TW |
| dc.subject | 菌絲 | zh_TW |
| dc.subject | biofilm | en |
| dc.subject | Candida tropicalis | en |
| dc.subject | ndt80 | en |
| dc.subject | Candida albicans | en |
| dc.subject | RNA-seq | en |
| dc.title | 熱帶念珠菌基因NDT80調控菌絲生成的機制探討 | zh_TW |
| dc.title | Insight into the mechanisms of NDT80 in hyphal formation in Candida tropicalis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅秀容;藍忠昱;薛雁冰;王紹鴻 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiu-Jung Lo;Chung-Yu Lan;Yen-Ping Hsueh;Shao-Hung Wang | en |
| dc.subject.keyword | 熱帶念珠菌,白色念珠菌,菌絲,生物膜, | zh_TW |
| dc.subject.keyword | ndt80,RNA-seq,Candida tropicalis,biofilm,Candida albicans, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202301393 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
