Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89721
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李弘元zh_TW
dc.contributor.advisorHung-Yung Lien
dc.contributor.author嚴愛文zh_TW
dc.contributor.authorI-Weng Yenen
dc.date.accessioned2023-09-18T16:08:53Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-18-
dc.date.issued2023-
dc.date.submitted2023-07-06-
dc.identifier.citationReferences
[1] Spellacy WN, Miller S, Winegar A, Peterson PQ. Macrosomia--maternal characteristics and infant complications. Obstet Gynecol 1985;66(2):158-61.
[2] Fung C, Zinkhan E. Short- and Long-Term Implications of Small for Gestational Age. Obstet Gynecol Clin North Am 2021;48(2):311-23.
[3] Damhuis SE, Ganzevoort W, Gordijn SJ. Abnormal Fetal Growth: Small for Gestational Age, Fetal Growth Restriction, Large for Gestational Age: Definitions and Epidemiology. Obstet Gynecol Clin North Am 2021;48(2):267-79.
[4] Boulet SL, Alexander GR, Salihu HM, Pass M. Macrosomic births in the united states: determinants, outcomes, and proposed grades of risk. Am J Obstet Gynecol 2003;188(5):1372-8.
[5] Adesina OA, Olayemi O. Fetal macrosomia at the University College Hospital, Ibadan: a 3-year review. J Obstet Gynaecol 2003;23(1):30-3.
[6] Simental-Mendía LE, Castañeda-Chacón A, Rodríguez-Morán M, Guerrero-Romero F. Birth-weight, insulin levels, and HOMA-IR in newborns at term. BMC Pediatr 2012;12:94.
[7] Ballard JL, Rosenn B, Khoury JC, Miodovnik M. Diabetic fetal macrosomia: significance of disproportionate growth. J Pediatr 1993;122(1):115-9.
[8] Mayer C, Joseph KS. Fetal growth: a review of terms, concepts and issues relevant to obstetrics. Ultrasound Obstet Gynecol 2013;41(2):136-45.
[9] Hermann GM, Dallas LM, Haskell SE, Roghair RD. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology 2010;98(3):238-44.
[10] Gu S, An X, Fang L, Zhang X, Zhang C, Wang J, et al. Risk factors and long-term health consequences of macrosomia: a prospective study in Jiangsu Province, China. J Biomed Res 2012;26(4):235-40.
[11] Chen YH, Chen WY, Chang CY, Cho CY, Tang YH, Yeh CC, et al. Association between maternal factors and fetal macrosomia in full-term singleton births. J Chin Med Assoc 2023;86(3):324-9.
[12] Liu Q, Yang H, Sun X, Li G. Risk factors and complications of small for gestational age. Pak J Med Sci 2019;35(5):1199-203.
[13] Yoshizato T, Satoh S. Morphological and functional evaluation of normal and abnormal fetal growth by ultrasonography. J Med Ultrason (2001) 2009;36(3):105-17.
[14] Ewington LJ, Gardosi J, Lall R, Underwood M, Fisher JD, Wood S, et al. Induction of labour for predicted macrosomia: study protocol for the 'Big Baby' randomised controlled trial. BMJ Open 2022;12(11):e058176.
[15] Fuglsang J, Ovesen P. Aspects of placental growth hormone physiology. Growth Horm IGF Res 2006;16(2):67-85.
[16] Frankenne F, Closset J, Gomez F, Scippo ML, Smal J, Hennen G. The physiology of growth hormones (GHs) in pregnant women and partial characterization of the placental GH variant. J Clin Endocrinol Metab 1988;66(6):1171-80.
[17] Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A, et al. Human placental growth hormone causes severe insulin resistance in transgenic mice. Am J Obstet Gynecol 2002;186(3):512-7.
[18] Newbern D, Freemark M. Placental hormones and the control of maternal metabolism and fetal growth. Current opinion in endocrinology, diabetes, and obesity 2011;18(6):409-16.
[19] McIntyre HD, Serek R, Crane DI, Veveris-Lowe T, Parry A, Johnson S, et al. Placental growth hormone (GH), GH-binding protein, and insulin-like growth factor axis in normal, growth-retarded, and diabetic pregnancies: correlations with fetal growth. J Clin Endocrinol Metab 2000;85(3):1143-50.
[20] Anthony RV, Pratt SL, Liang R, Holland MD. Placental-fetal hormonal interactions: impact on fetal growth. J Anim Sci 1995;73(6):1861-71.
[21] Sibiak R, Jankowski M, Gutaj P, Mozdziak P, Kempisty B, Wender-Ożegowska E. Placental Lactogen as a Marker of Maternal Obesity, Diabetes, and Fetal Growth Abnormalities: Current Knowledge and Clinical Perspectives. J Clin Med 2020;9(4).
[22] Hill DJ. Placental control of metabolic adaptations in the mother for an optimal pregnancy outcome. What goes wrong in gestational diabetes? Placenta 2018;69:162-8.
[23] Hu L, Lytras A, Bock ME, Yuen CK, Dodd JG, Cattini PA. Detection of placental growth hormone variant and chorionic somatomammotropin-L RNA expression in normal and diabetic pregnancy by reverse transcriptase-polymerase chain reaction. Mol Cell Endocrinol 1999;157(1-2):131-42.
[24] Han VK, Bassett N, Walton J, Challis JR. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab 1996;81(7):2680-93.
[25] D'Ercole AJ, Hill DJ, Strain AJ, Underwood LE. Tissue and plasma somatomedin-C/insulin-like growth factor I concentrations in the human fetus during the first half of gestation. Pediatr Res 1986;20(3):253-5.
[26] Christou H, Connors JM, Ziotopoulou M, Hatzidakis V, Papathanassoglou E, Ringer SA, et al. Cord blood leptin and insulin-like growth factor levels are independent predictors of fetal growth. J Clin Endocrinol Metab 2001;86(2):935-8.
[27] Samaan NA, Schultz PN, Pham FK. Insulin-like growth factor II and nonsuppressible insulin-like activity levels in newborns. Am J Obstet Gynecol 1990;163(6 Pt 1):1836-9.
[28] Ashton IK, Zapf J, Einschenk I, MacKenzie IZ. Insulin-like growth factors (IGF) 1 and 2 in human foetal plasma and relationship to gestational age and foetal size during midpregnancy. Acta Endocrinol (Copenh) 1985;110(4):558-63.
[29] Gluckman PD, Johnson-Barrett JJ, Butler JH, Edgar BW, Gunn TR. Studies of insulin-like growth factor -I and -II by specific radioligand assays in umbilical cord blood. Clin Endocrinol (Oxf) 1983;19(3):405-13.
[30] Allard JB, Duan C. IGF-Binding Proteins: Why Do They Exist and Why Are There So Many? Front Endocrinol (Lausanne) 2018;9:117.
[31] Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995;16(1):3-34.
[32] Bell SC, Jackson JA, Ashmore J, Zhu HH, Tseng L. Regulation of insulin-like growth factor-binding protein-1 synthesis and secretion by progestin and relaxin in long term cultures of human endometrial stromal cells. J Clin Endocrinol Metab 1991;72(5):1014-24.
[33] Lee PD, Conover CA, Powell DR. Regulation and function of insulin-like growth factor-binding protein-1. Proc Soc Exp Biol Med 1993;204(1):4-29.
[34] Qiu Q, Bell M, Lu X, Yan X, Rodger M, Walker M, et al. Significance of IGFBP-4 in the development of fetal growth restriction. J Clin Endocrinol Metab 2012;97(8):E1429-39.
[35] Hoet JJ, Hanson MA. Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J Physiol 1999;514 ( Pt 3)(Pt 3):617-27.
[36] Rao S, Yajnik CS, Kanade A, Fall CH, Margetts BM, Jackson AA, et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 2001;131(4):1217-24.
[37] Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr 2000;54 Suppl 1:S47-51.
[38] Kulkarni SR, Kumaran K, Rao SR, Chougule SD, Deokar TM, Bhalerao AJ, et al. Maternal lipids are as important as glucose for fetal growth: findings from the Pune Maternal Nutrition Study. Diabetes Care 2013;36(9):2706-13.
[39] Stanirowski PJ, Szukiewicz D, Majewska A, Wątroba M, Pyzlak M, Bomba-Opoń D, et al. Differential Expression of Glucose Transporter Proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the Placenta of Macrosomic, Small-for-Gestational-Age and Growth-Restricted Foetuses. J Clin Med 2021;10(24).
[40] Voldner N, Qvigstad E, Frøslie KF, Godang K, Henriksen T, Bollerslev J. Increased risk of macrosomia among overweight women with high gestational rise in fasting glucose. J Matern Fetal Neonatal Med 2010;23(1):74-81.
[41] Combs CA, Gunderson E, Kitzmiller JL, Gavin LA, Main EK. Relationship of fetal macrosomia to maternal postprandial glucose control during pregnancy. Diabetes Care 1992;15(10):1251-7.
[42] Leng J, Hay J, Liu G, Zhang J, Wang J, Liu H, et al. Small-for-gestational age and its association with maternal blood glucose, body mass index and stature: a perinatal cohort study among Chinese women. BMJ Open 2016;6(9):e010984.
[43] Chavan-Gautam P, Rani A, Freeman DJ. Distribution of Fatty Acids and Lipids During Pregnancy. Adv Clin Chem 2018;84:209-39.
[44] Barbour LA, Hernandez TL. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin Ther 2018;40(10):1638-47.
[45] Chen KY, Lin SY, Lee CN, Wu HT, Kuo CH, Kuo HC, et al. Maternal Plasma Lipids During Pregnancy, Insulin-like Growth Factor-1, and Excess Fetal Growth. J Clin Endocrinol Metab 2021;106(9):e3461-e72.
[46] Wang J, Moore D, Subramanian A, Cheng KK, Toulis KA, Qiu X, et al. Gestational dyslipidaemia and adverse birthweight outcomes: a systematic review and meta-analysis. Obes Rev 2018;19(9):1256-68.
[47] Karsdorp VH, van Vugt JM, van Geijn HP, Kostense PJ, Arduini D, Montenegro N, et al. Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery. Lancet 1994;344(8938):1664-8.
[48] Jansson T, Powell TL. Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol 2013;56(3):591-601.
[49] Forbes K, Westwood M. The IGF axis and placental function. a mini review. Horm Res 2008;69(3):129-37.
[50] Roberts CT, Owens JA, Sferruzzi-Perri AN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta 2008;29 Suppl A:S42-7.
[51] Olshan DS, Rader DJ. Angiopoietin-like protein 4: A therapeutic target for triglycerides and coronary disease? J Clin Lipidol 2018;12(3):583-7.
[52] Kersten S. Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism. J Lipid Res 2021;62:100150.
[53] Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 2007;27(11):2420-7.
[54] Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Müller M, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 2006;281(2):934-44.
[55] Dewey FE, Gusarova V, O'Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease. N Engl J Med 2016;374(12):1123-33.
[56] Abu-Farha M, Al-Khairi I, Cherian P, Chandy B, Sriraman D, Alhubail A, et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids Health Dis 2016;15(1):181.
[57] Cheng JC, Fang L, Li Y, Thakur A, Hoodless PA, Guo Y, et al. G protein-coupled estrogen receptor stimulates human trophoblast cell invasion via YAP-mediated ANGPTL4 expression. Commun Biol 2021;4(1):1285.
[58] Li M, Hu J, Yao L, Gao M. Decreased ANGPTL4 impairs endometrial angiogenesis during peri-implantation period in patients with recurrent implantation failure. J Cell Mol Med 2020;24(18):10730-43.
[59] Hsieh WS, Wu HC, Jeng SF, Liao HF, Su YN, Lin SJ, et al. Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatr Taiwan 2006;47(1):25-33.
[60] Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. American journal of obstetrics and gynecology 1982;144(7):768-73.
[61] F. Gary Cunningham KJL, Jodi S. Dashe, Barbara L. Hoffman, Catherine Y. Spong, Brian M. Casey. Williams Obstetrics, 26e. 2022.
[62] Chen SC, Lee CN, Hu FC, Kuo CH, Lin MW, Chen KY, et al. Gestational hypertriglyceridemia and adverse pregnancy outcomes: A search for cutoffs using generalized additive models. Diabetes research and clinical practice 2022;186:109820.
[63] Deng M, Kutrolli E, Sadewasser A, Michel S, Joibari MM, Jaschinski F, et al. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy. J Lipid Res 2022;63(7):100237.
[64] Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Müller M, et al. Peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) but not PPARalpha serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 2009;29(23):6257-67.
[65] Gibbons KS, Chang AMZ, Ma RCW, Tam WH, Catalano PM, Sacks DA, et al. Prediction of large-for-gestational age infants in relation to hyperglycemia in pregnancy - A comparison of statistical models. Diabetes Res Clin Pract 2021;178:108975.
[66] Liu PJ, Liu Y, Ma L, Yao AM, Chen XY, Hou YX, et al. The Predictive Ability of Two Triglyceride-Associated Indices for Gestational Diabetes Mellitus and Large for Gestational Age Infant Among Chinese Pregnancies: A Preliminary Cohort Study. Diabetes Metab Syndr Obes 2020;13:2025-35.
[67] Perichart-Perera O, Avila-Sosa V, Solis-Paredes JM, Montoya-Estrada A, Reyes-Muñoz E, Rodríguez-Cano AM, et al. Vitamin D Deficiency, Excessive Gestational Weight Gain, and Oxidative Stress Predict Small for Gestational Age Newborns Using an Artificial Neural Network Model. Antioxidants (Basel) 2022;11(3).
[68] Hanchard TJ, de Vries BS, Quinton AE, Sinosich M, Hyett JA. Combining early (<11 weeks' gestation) ultrasound features and maternal factors to predict small-for-gestational age neonates. Australas J Ultrasound Med 2021;24(1):37-47.
[69] Papastefanou I, Wright D, Nicolaides KH. Competing-risks model for prediction of small-for-gestational-age neonate from maternal characteristics and medical history. Ultrasound Obstet Gynecol 2020;56(2):196-205.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89721-
dc.description.abstract背景:異常的胎兒生長,包括胎兒過大(large for gestational age)和胎兒過小(small for gestational age),會增加周產期併發症的風險。然而,目前對於異常胎兒生長的致病機轉並不是完全了解,也沒有好用並且準確的預測模型。Angiopoietin-like protein 4 (ANGPTL4)是一種會被分泌至血漿中的蛋白質,已知會影響脂質和葡萄糖代謝,同時可能影響胎盤發育。在本研究中,我們將探討血漿中ANGPTL4在懷孕期間與胎兒生長是否有關,並探索其與葡萄糖代謝、脂質代謝和胎盤功能之間的關係。
方法:我們在國立臺灣大學醫院進行了一項前瞻性研究,收錄時間從2013年11月到2018年4月。我們在懷孕的第一和第二孕期紀錄了母親的臨床特徵和收集血液樣本,並在生產後測量胎兒出生體重和收集臍帶血樣本。以上資料被用來分析母親血漿中ANGPTL4濃度與SGA、LGA、葡萄糖代謝、脂質代謝和胎盤功能之間的關係。
結果:本研究共招募了852名懷孕婦女。與正常胎兒大小組別相比,LGA組和SGA組的母親血漿ANGPTL4濃度均較高。出生體重與懷孕第一孕期血漿ANGPTL4濃度呈曲線關係。在調整了其他相關因子後,母親血漿ANGPTL4與LGA和SGA均呈顯著相關。相較於其他傳統風險因子,母親血漿ANGPTL4可額外增加對LGA和SGA的預測力。此外,血漿ANGPTL4濃度與母親血中growth hormone variant、糖化血色素、三酸甘油脂與游離脂肪酸濃度呈正相關,但與臍帶血內的各種生長相關因子無關連。
結論:母親血漿中ANGPTL4濃度與葡萄糖和脂質代謝、以及胎兒生長有關。懷孕早期母親的血漿ANGPTL4可以作為早期指標,用於預測LGA和SGA的風險。
zh_TW
dc.description.abstractIntroduction: Abnormal fetal growth, including large-for-gestational-age (LGA) and small-for-gestational-age (SGA), is associated with adverse pregnancy outcomes. However, the underlying mechanisms and accurate predictive models for abnormal fetal growth remain limited. Angiopoietin-like protein 4 (ANGPTL4) is a secreted protein known to affect lipid and glucose metabolism and may have a role in placental development. In this study, we aimed to investigate the relationship between plasma ANGPTL4, glucose metabolism, lipid metabolism, placental function, and fetal growth during pregnancy.
Method: A prospective cohort study was conducted at National Taiwan University Hospital between November 2013 and April 2018. Clinical features and blood samples were collected during the first and second trimesters, while birth weight measurements and cord blood samples were obtained at delivery. We utilized the data to analyze the relationship between maternal plasma ANGPTL4 levels and SGA, LGA, glucose metabolism, lipid metabolism, and placental function.
Result: In this study, a total of 852 pregnant women were enrolled. Both the LGA and SGA groups had higher plasma ANGPTL4 concentrations compared to the appropriate-for-gestational-age group. A quadratic relationship was observed between birthweight and first trimester plasma ANGPTL4 concentration. Maternal plasma ANGPTL4 showed significant associations with LGA and SGA after adjusting for potential confounders. The predictive ability of maternal plasma ANGPTL4, measured by the area under the ROC curve, was superior to traditional risk factors in identifying LGA and SGA cases. Besides, plasma ANGPTL4 levels were positively correlated with plasma growth hormone variant, hemoglobin A1c, triglyceride, and free fatty acid levels but were not associated with cord blood growth factors.
Conclusion: Plasma ANGPTL4 is associated with glucose metabolism, lipid metabolism, and fetal growth during pregnancy. Plasma ANGPTL4 during the first trimester is an early biomarker to predict the risk of delivering LGA and SGA newborns.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-18T16:08:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-18T16:08:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
中文摘要 ii
英文摘要 iv
背景介紹 1
研究方法 10
研究結果 13
討論 17
結論 21
參考文獻 22
表格 28
圖 38
-
dc.language.isoen-
dc.subject胎兒過大zh_TW
dc.subject懷孕zh_TW
dc.subject胎兒過小zh_TW
dc.subjectANGPTL4en
dc.subjectSGAen
dc.subjectLGAen
dc.subjectPregnancyen
dc.title懷孕期間angiopoietin-like protein 4與葡萄糖和脂質代謝、胎盤功能及胎兒生長的關聯zh_TW
dc.titleThe association between plasma angiopoietin-like protein 4, glucose and lipid metabolism during pregnancy, placental function, and fetal growthen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周祖述;王治元;王淑慧zh_TW
dc.contributor.oralexamcommitteeTZUU-SHUH JOU;Chih-Yuan Wang;Shu-Huei Wangen
dc.subject.keyword懷孕,胎兒過大,胎兒過小,zh_TW
dc.subject.keywordANGPTL4,Pregnancy,SGA,LGA,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202301373-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-06-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved