Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠zh_TW
dc.contributor.advisorChih-Chung Yangen
dc.contributor.author賴易承zh_TW
dc.contributor.authorYi-Chen Laien
dc.date.accessioned2023-09-15T16:20:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, “White-light-emitting diodes with quantum dot color converters for display backlights,” Adv. Mater. 22(28), 3076-3080 (2010).
2. H. C. Yoon, H. Kang, S. Lee, J. H. Oh, H. Yang, and Y. R. Do, “Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance,” ACS Appl. Mater. Interfaces 8(28), 18189-18200 (2016).
3. C. Du, Z. Ma, J. Zhou, T. Lu, Y. Jiang, P. Zuo, H. Jia, and H. Chen, “Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption,” Appl. Phys. Lett. 105(7), 071108 (2014).
4. X. Zhao, B. Tang, L. Gong, J. Bai, J. Ping, and S. Zhou, “Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes,” Appl. Phys. Lett. 118(18), 182102 (2021).
5. J. H. Oh, K. H. Lee, H. C. Yoon, H. Yang, and Y. R. Do, “Color-by-blue display using blue quantum dot light-emitting diodes and green/red color converting phosphors,” Opt. Express 22(S2), A511-A520 (2014).
6. H. V. Han, H. Y. Lin, C. C. Lin, W. C. Chong, J. R. Li, K. J. Chen, P. Yu, T. M. Chen, H. M. Chen, K. M. Lau, and H. C. Kuo, “Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology,” Opt. Express 23(25), 32504-32515 (2015).
7. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946).
8. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature 429(6992), 642-646 (2004).
9. J. Yu, L. Wang, D. Yang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, “Improving the internal quantum efficiency of green InGaN quantum dots through coupled InGaN/GaN quantum well and quantum dot structure,” Appl. Phys. Express 8(9), 094001 (2015).
10. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021).
11. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021).
12. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010).
13. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ).
14. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016).
15. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020).
16. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021).
17. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021).
18. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B. 66, 153305 (2002).
19. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater. 3, 601 (2004).
20. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008).
21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
22. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cu, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979 (2010).
23. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
24. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914 (2011).
25. C. Y. Su, C. H. Lin, Y. F. Yao, W. H. Liu, M. Y. Su, H. C. Chiang, M. C. Tsai, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode,” Opt. Express 25, 21526-21536 (2017).
26. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
27. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150 (2015).
28. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31, 095201 (2020).
29. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44, 5691-5694 (2019).
30. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27, A629-A642 (2019).
31. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26, 23629 (2018).
32. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, “Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in surface nano-holes of a blue-emitting light-emitting diode,” submitted to Nanotechnology.
33. C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334-341 (2008).
34. S. Lin, G. Tan, J. Yu, E. Chen, Y. Weng, X. Zhou S. Xu, Y. Ye, Q. F. Yan, and T. Guo, “Multi-primary-color quantum-dot down-converting films for display applications,” Opt. Express 27(20), 28480-28493 (2019).
35. S. Lee and C. Lee, “High-density quantum dots composites and its photolithographic patterning applications,” Polym. Adv. Technol. 30(3), 749-754 (2019).
36. Y. Liu, Z. Wang, Y. Liu, G. Zhu, O. Jacobson, X. Fu, R. Bai, X. Lin, N. Lu, X. Yang, W. Fan, J. Song, Z. Wang, G. Yu, F. Zhang, H. Kalish, G. Niu, Z. Nie, and X. Chen, “Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors,” ACS Nano 11(10), 10539-10548 (2017).
37. M. Uz, V. Bulmus, and S. A. Altinkaya, “Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle - cell interactions: An investigation on cell cycle, apoptosis, and DNA damage,” Langmuir 32(23), 5997-6009 (2016).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89705-
dc.description.abstract我們將膠體量子點和化學合成的銀奈米顆粒連同光阻填入貫穿整個量子井結構的表面奈米孔洞中,顯示量子點發光、從綠光量子點到紅光量子點之間的福斯特共振能量轉換、從量子井到量子點之間的福斯特共振能量轉換效率可以提升,而表面電漿子耦合的效果也明顯上升。在本研究中,我們首先探討在沒有量子井結構內的結果,為此我們將奈米洞的陣列製作在的氮化鎵模板上,接著,才將奈米洞的陣列製作在有銦氮化鎵/氮化鎵量子井的基板上,探討量子井與量子點之間福斯特共振能量轉換的行為。在這兩種不同的模板上,我們比較表面製作奈米洞陣列的樣品與表面為平面的樣品之結果,同時也比較兩種不同深度的奈米洞樣品,這幾種樣品,其奈米洞都貫穿量子井結構。較淺的奈米洞樣品顯示從量子井到量子點之間的整體福斯特共振能量轉換效率比較高。此外,我們也探討了比量子井更淺的奈米洞樣品,在其表面鋪上由銀奈米顆粒和量子井產生的表面電漿子耦合,來探討量子井到量子點之間的福斯特共振能量轉換之變化,結果顯示藉由表面電漿子耦合的效果可以增強福斯特共振能量轉換的效率。zh_TW
dc.description.abstractThe enhancements of colloidal quantum dot (QD) emission, Förster resonance energy transfer (FRET) from green-emitting QD (GQD) into red-emitting QD (RQD), FRET from embedded quantum well (QW) into QD, and surface plasmon (SP) coupling effect when QDs and synthesized Ag nanoparticles (NPs) are inserted into a surface nano-hole, which penetrates through the whole QW structure, are demonstrated. Nano-hole arrays on a GaN template to understand the effects without QW are first fabricated. Then, nano-hole arrays on an InGaN/GaN QW template for studying the FRET processes from the QW into QD are prepared. The samples with planar top surfaces for overlaying colloidal QDs are also fabricated to compare the results with the nano-hole samples. Meanwhile, the results of a set of sample with deeper nano-holes are compared with those with shallower nano-holes. The overall FRET from the QW structure into the inserted QDs in a shallower nano-hole sample is stronger. Besides, the SP coupling effect of surface Ag NPs on the FRET from the QW structure into the QDs inserted into a shallow nano-hole is investigated. The FRET process can be enhanced through the SP coupling effect.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:20:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-15T16:20:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract: iv
Contents v
List of Figure viii
List of Table xvii
Chapter 1 Introduction 1
1.1 Photon down-conversion and Förster resonance energy transfer 1
1.2 Colloidal quantum dots in surface nano-holes for enhancing Förster resonance energy transfer 1
1.3 Surface plasmon coupling enhanced color conversion 2
1.4 Preliminary study 3
1.5 Research motivations 5
1.6 Thesis structure 6
Chapter 2 Sample Structures and Fabrication Procedures 12
2.1 Sample structures 12
2.2 Fabrication of a surface nano-hole array 13
2.3 Colloidal quantum dots and synthesized Ag nanoparticles 14
2.4 Optical characterization methods 17
Chapter 3 Emission, Förster Resonance Energy Transfer and Surface Plasmon Coupling in a Surface Nanoscale Hole on a GaN Template 31
3.1 Time-resolved photoluminescence results 31
3.2 Continuous photoluminescence results 34
Chapter 4 Emission, Förster Resonance Energy Transfer and Surface Plasmon Coupling in a Surface Nanoscale Hole on a Quantum-well Structure 41
4.1 Emission behaviors of quantum-well templates 41
4.2 Time-resolved photoluminescence results 42
4.3 Continuous photoluminescence results 47
4.4 Effects of reducing nano-hole depth 48
Chapter 5 Color Conversion of Colloidal Quantum Dot Affected by the Surface Plasmon Coupling between Surface Ag Nanoparticles and a Quantum-well Structure 88
5.1 General descriptions of the samples 88
5.2 Results of time-resolved and continuous photoluminescence measurements 89
Chapter 6 Discussions 104
Chapter 7 Conclusions 106
References: 107
-
dc.language.isoen-
dc.subject膠體量子點zh_TW
dc.subject表面電漿子耦合zh_TW
dc.subject福斯特共振能量轉換zh_TW
dc.subject奈米孔洞zh_TW
dc.subject量子井zh_TW
dc.subject銀奈米顆粒zh_TW
dc.subjectsurface plasmon couplingen
dc.subjectquantum wellen
dc.subjectFörster resonance energy transferen
dc.subjectcolloidal quantum doten
dc.subjectnano-holeen
dc.subjectAg nanoparticlesen
dc.title在量子井結構上表面奈米孔洞內膠體量子點的發光、福斯特共振能量轉換與表面電漿子耦合行為zh_TW
dc.titleEmission, Förster Resonance Energy Transfer and Surface Plasmon Coupling Behaviors of Colloidal Quantum Dots in a Surface Nanoscale Hole on a Quantum-well Structureen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃建璋;林建中;陳奕君;郭仰zh_TW
dc.contributor.oralexamcommitteeJian-Jang Huang;Chien-Chung Lin;I-Chun Cheng;Yang Kuoen
dc.subject.keyword膠體量子點,銀奈米顆粒,量子井,奈米孔洞,福斯特共振能量轉換,表面電漿子耦合,zh_TW
dc.subject.keywordcolloidal quantum dot,Förster resonance energy transfer,quantum well,surface plasmon coupling,Ag nanoparticles,nano-hole,en
dc.relation.page111-
dc.identifier.doi10.6342/NTU202203112-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf6.07 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved