請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃永芬 | zh_TW |
| dc.contributor.advisor | Yung-Fen Huang | en |
| dc.contributor.author | 唐國賜 | zh_TW |
| dc.contributor.author | Kok-Ci Tong | en |
| dc.date.accessioned | 2023-09-15T16:18:06Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Araus, JL, Kefauver, SC, Zaman-Allah, M, Olsen, MS, Cairns, JE (2018) Translating high-throughput phenotyping into genetic gain. Trends in plant science 23, 451-466.
Bannari, A, Asalhi, H, Teillet, PM (2002) 'Transformed difference vegetation index (TDVI) for vegetation cover mapping, IEEE International Geoscience and Remote Sensing Symposium.' 24-28 June 2002. Barnes, E, Clarke, T, Richards, S, Colaizzi, P, Haberland, J, Kostrzewski, M, Waller, P, Choi, C, Riley, E, Thompson, T (2000a) 'Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data, Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA.' Barnes, E, Clarke, TR, Richards, SE, Colaizzi, P, Haberland, J, Kostrzewski, M, Waller, P, Choi, C, Riley, E, Thompson, TL (2000b) Coincident detection of crop water stress, nitrogen status, and canopy density using ground based multispectral data. Birth, GS, McVey, GR (1968) Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal 60, 640-643. Chen, PF, Nicolas, T, Wang, JH, Philippe, V, Huang, WJ, Li, BG (2010) New index for crop canopy fresh biomass estimation. Guang Pu Xue Yu Guang Pu Fen Xi 30, 512-7. Cherney, J, Digman, M, Cherney, D (2021) Handheld NIRS for forage evaluation. Computers and Electronics in Agriculture 190, 106469. Collard, BCY, Jahufer, MZZ, Brouwer, JB, Pang, ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142, 169-196. Corson, D, Waghorn, G, Ulyatt, M, Lee, J (1999) 'NIRS: Forage analysis and livestock feeding. Proceedings of the New Zealand Grassland Association.' Crippen, RE (1990) Calculating the vegetation index faster. Remote Sensing of Environment 34, 71-73. Datt, B, McVicar, TR, Niel, TGV, Jupp, DLB, Pearlman, JS (2003) Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing 41, 1246-1259. DuBois, M, Gilles, KA, Hamilton, JK, Rebers, PA, Smith, F (2002) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350-356. Ehammer, A, Fritsch, S, Conrad, C, Lamers, J, Dech, S (2010) 'Statistical derivation of fPAR and LAI for irrigated cotton and rice in arid Uzbekistan by combining multi-temporal RapidEye data and ground measurements.' Available at http://link.aip.org/link/PSISDG/v7824/i1/p782409/s1&Agg=doi El-Shikha, DM, Barnes, EM, Clarke, TR, Hunsaker, DJ, Haberland, JA, P. J. Pinter, J, Waller, PM, Thompson, TL (2008) Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Transactions of the ASABE 51, 73-82. Escadafal, R, Belghith, A, Ben-Moussa, H (1994) 'Indices spectraux pour la dégradation des milieux naturels en Tunisie aride, 6e Symp. Int. sur les mesures physiques et signatures en teledetection.' Escadafal, R, Huete, A (1991) Improvement in remote-sensing of low vegetation cover in arid regions by correcting vegetation indexes for soil noise. Comptes Rendus De L Academie Des Sciences Serie Ii 312, 1385-1391. Gamon, JA, Surfus, JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytologist 143, 105-117. Geipel, J, Bakken, AK, Jørgensen, M, Korsaeth, A (2021) Forage yield and quality estimation by means of UAV and hyperspectral imaging. Precision Agriculture 22, 1437-1463. Gitelson, A, Merzlyak, MN (1994) Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology 22, 247-252. Gitelson, A, Viña, A, Arkebauer, T, Rundquist, D, Keydan, G, Leavitt, B, Keydan, G (2003) Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters - GEOPHYS RES LETT 30, Gitelson, AA, Kaufman, YJ, Merzlyak, MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58, 289-298. Gitelson, AA, Kaufman, YJ, Stark, R, Rundquist, D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80, 76-87. Gobron, N, Pinty, B, Verstraete, M, Widlowski, JL (2000) Advanced spectral algorithm and new vegetation indices optimized for upcoming sensors: Development, accuracy and applications. IEEE Trans. Geosci. Remote Sens. 36, 2489-2505. Goel, NS, Qin, W (1994) Influences of canopy architecture on relationships between various vegetation indices and LAI and Fpar: A computer simulation. Remote Sensing Reviews 10, 309-347. Haboudane, D, Miller, JR, Pattey, E, Zarco-Tejada, PJ, Strachan, IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90, 337-352. Hancock, DW, Dougherty, CT (2007) Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa. Crop Science 47, 2547-2556. Hewson, R, Cudahy, T, Huntington, J (2001) 'Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data.' Huete, A (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 59, 440-451. Huete, AR (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment 25, 295-309. Huete, AR, Liu, HQ, Batchily, K, van Leeuwen, W (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 59, 440-451. Hunt Jr, ER, Daughtry, CST, Eitel, JUH, Long, DS, 2011. Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal. 103: 1090-1099. Kaufman, YJ, Tanre, D (1992) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing 30, 261-270. Mallet, C, David, N (2016) Digital terrain models derived from airborne LiDAR data. In 'Optical Remote Sensing of Land Surface.' (Eds N Baghdadi, M Zribi.) pp. 299-319. (Elsevier: Merzlyak, MN, Gitelson, AA, Chivkunova, OB, Rakitin, VY (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum 106, 135-141. Meyer, GE, Neto, JC (2008) Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture 63, 282-293. Neto, JC, Meyer, GE, Jones, DD (2006) Individual leaf extractions from young canopy images using Gustafson–Kessel clustering and a genetic algorithm. Computers and Electronics in Agriculture 51, 66-85. Otsu, N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 62-66. Pasquini, C (2018) Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Analytica chimica acta 1026, 8-36. Pearson, RL, Miller, LD (1972) 'Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Remote Sensing of Environment, VIII.' October 01, 1972. Available at https://ui.adsabs.harvard.edu/abs/1972rse..conf.1355P Peng, G, Ruiliang, P, Biging, GS, Larrieu, MR (2003) Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 41, 1355-1362. Perry, CR, Lautenschlager, LF (1984) Functional equivalence of spectral vegetation indexes. Remote Sensing of Environment 14, 169-182. Pu, R, Gong, P, Yu, Q (2008) Comparative analysis of EO-1 ALI and Hyperion, and Landsat ETM+ data for mapping forest crown closure and leaf area index. Sensors (Basel) 8, 3744-3766. Pullanagari, RR, Kereszturi, G, Yule, I (2018) Integrating airborne hyperspectral, topographic, and soil data for estimating pasture quality using recursive feature elimination with random forest regression. Remote Sensing 10, 1117. Qi, J, Chehbouni, A, Huete, AR, Kerr, YH, Sorooshian, S (1994) A modified soil adjusted vegetation index. Remote Sensing of Environment 48, 119-126. Rouse, JW, Haas, RH, Deering, DW, Schell, JA, Harlan, JC (1973) 'Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor].' Sharma, P, Leigh, L, Chang, JY, Maimaitijiang, M, Caffe, M (2022) Above-ground biomass estimation in oats using UAV remote sensing and machine learning. Sensors 22, Smith, C, Karunaratne, S, Badenhorst, P, Cogan, N, Spangenberg, G, Smith, K (2020) Machine learning algorithms to predict forage nutritive value of in situ perennial ryegrass plants using hyperspectral canopy reflectance data. Remote Sensing 12, 928. Sripada, RP, Schmidt, JP, Dellinger, AE, Beegle, DB (2008) Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agronomy Journal 100, 1553-1561. Thiex, N, Novotny, L, Crawford, A (2012) Determination of ash in animal feed: AOAC official method 942.05 revisited. J AOAC Int 95, 1392-7. Thiex, NJ, Manson, H, Anderson, S, Persson, J-Å, Anderson, S, Bogren, E, Bolek, G, Budde, D, Ellis, C, Eriksson, S, Field, G, Frankenius, E, Henderson, C, Henry, C, Kapphahn, M, Lundberg, L, Manson, H, Moller, J, Russell, M, Sefert-Schwind, J, Spann, M (2002) Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative study. Journal of AOAC INTERNATIONAL 85, 309-317. Tucker, CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127-150. Tucker, CJ, Elgin, JH, McMurtrey, JE, Fan, CJ (1979) Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing of Environment 8, 237-248. Van Soest, PJ, Robertson, JB, Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 3583-97. Wang, F-m, Huang, J-f, Tang, Y-l, Wang, X-z (2007) New vegetation index and its application in estimating leaf area index of rice. Rice Science 14, 195-203. Wang, Q, Ellis, PR (2014) Oat beta-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. Br J Nutr 112 Suppl 2, S4-S13. Yang, C, Everitt, JH, Bradford, JM, Murden, D (2004) Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variability. Precision Agriculture 5, 445-461. Zarco-Tejada, PJ, Miller, JR, Noland, TL, Mohammed, GH, Sampson, PH (2001) Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 39, 1491-1507. Zeng, L, Chen, C (2018) Using remote sensing to estimate forage biomass and nutrient contents at different growth stages. Biomass and bioenergy 115, 74-81. Zhang, C, Walters, D, Kovacs, JM (2014) Applications of low altitude remote sensing in agriculture upon farmers' requests--a case study in northeastern Ontario, Canada. PLoS One 9, e112894. Zhou, J, Beche, E, Vieira, CC, Yungbluth, D, Zhou, J, Scaboo, A, Chen, P (2021) Improve soybean variety selection accuracy using UAV-based high-throughput phenotyping technology. Frontiers in plant science 12, Zhou, X, Zheng, HB, Xu, XQ, He, JY, Ge, XK, Yao, X, Cheng, T, Zhu, Y, Cao, WX, Tian, YC (2017) Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing 130, 246-255. 王天成 (2018) 以無人機獲取之多光譜影像建立田間作物性狀調查暨栽培管理決策支援系統。臺灣大學農藝學研究所學位論文,頁1-119。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89696 | - |
| dc.description.abstract | 芻料的營養價值 (Nutritive value, NV) 是一系列評估牧草品質的重要指標。然而,現階段測量農藝性狀以及營養價值的方法費時又費力,不利芻料作物育種的進行。透過穩健的統計方法,利用可反映與植物生理與型態有關之特定波長反射光譜之多光譜影像 (Multispectral imagery) 近似農藝性狀以及營養價值可為解決該問題的方法,但目前於臺灣尚未具備相關數據。因此,本研究目的為評估無人機擷取之多光譜影像應用於近似臺灣芻料燕麥營養價值的可行性。本實驗於2020年10月28日在臺灣大學附設農場以叢區種植四種具有不同性狀的燕麥品系(26號,43號,臺大選一號以及天鵝)。本試驗將田區劃分為十區,每個品系在區集內以三重複隨機種植四品系。當其中一個品系開始抽穗時,便於收穫當日利用無人機進行多光譜影像的拍攝,試驗期間總計進行八次拍攝,並使用反射光譜數據計算五十個不同的植生指數 (Vegetation indices, VIs) 作為預測變數以預測不同的性狀,並以循序向前特徵選取法 (Sequential forward floating selection, SFFS) 取得影響各性狀最重要的數個植生指數。結果顯示乾物質(Dry matter, DM)的預測模型表現最佳(R2 = 0.84)而其餘模型的表現則落在0.15至0.64之間。本研究提供從資料收集到模型建立的初步流程,未來透過更大量的數據、多年份的資料、光譜校正,與統計方法的調整等,期待更增加模型的預測能力。 | zh_TW |
| dc.description.abstract | Nutritive values (NV) are a series of important parameters for the evaluation of forage quality. However, current phenotyping of agronomic traits and NV for forage crops is labor-intensive and time-consuming. A potential strategy to overcome such tedious phenotyping is the application of multispectral imagery to approximate nutritive values with the help of robust statistical methods. Multispectral imagery contains information within specific wavelengths which are associated with biophysical parameters and plant morphology. However, there is no such information available for forage oat in Taiwan. Therefore, the objective of this study was to evaluate the possibility of approximating agronomic traits and NV of forage oat in Taiwan using multispectral imagery. On 28th October 2020, four oat lines (No. 26, No. 43, NTU Sel No 1. and Swan) with different characteristics were sown in 120 hill plots, allocated into ten blocks in the Experimental Farm of National Taiwan University. Within each block, four oat lines were allocated randomly and each line had three replicates. After either of the oat line within a block began heading, a total of eight times spectral measurements throughout the field trial were conducted with the help of an unmanned aerial vehicle on the day of harvest. In order to approximate each agronomic trait and NV, fifty vegetation indices (VIs) were derived from the spectral data to serve as predictor variables. Sequential forward floating selection was then utilized to choose the most important VIs for each trait. The result showed that the model for dry matter (DM) performed the best (R2 = 0.84) while the R2 for other traits ranged from 0.15 to 0.64. The present study laid a foundation workflow from data collection to model fitting, which can be further improved through multi-year data, spectral calibration, and improved statistical methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:18:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:18:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Content
口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv Table of Content v List of Figures vii List of Tables ix List of Supplementary Materials x List of Abbreviation xi 1. Introduction 1 2. Materials and Methods 4 2.1 Field trial 4 2.2 Field data acquisition 4 2.3 Chemical Analysis 5 2.3.1 Crude protein (CP) 5 2.3.2 Water soluble carbohydrates (WSC) 8 2.3.3 Neutral detergent fibre (NDF) 8 2.3.4 Acid detergent fibre (ADF) 9 2.3.5 Ash 9 2.3.6 in vitro dry matter digestibility (ivDMD) 10 2.3.7 in vitro neutral detergent fibre digestibility (ivNDFD) 11 2.4 Image processing and data analysis 12 3. Results 14 3.1 Descriptive statistics of agronomic traits and NV of all oat lines 14 3.2 The variation of each agronomic trait and NV by harvest dates 14 3.3 Correlation between agronomic traits and between nutritive value 15 3.4 Model performance after sequential forward floating selection 16 4. Discussion 16 4.1 Choosing the optimal harvest date of superior oats 17 4.2 Selected features interpretation 20 4.3 Further model performance improvement 22 5. Conclusion 23 References 47 Supplementary Materials 51 | - |
| dc.language.iso | en | - |
| dc.subject | 芻料燕麥 | zh_TW |
| dc.subject | 植生指數 | zh_TW |
| dc.subject | 多光譜影像 | zh_TW |
| dc.subject | 營養價值 | zh_TW |
| dc.subject | forage oat | en |
| dc.subject | multispectral imagery | en |
| dc.subject | nutritive values | en |
| dc.subject | vegetation indices | en |
| dc.title | 無人機擷取之多光譜影像應用於評估臺灣芻料燕麥營養價值的可行性 | zh_TW |
| dc.title | Evaluate the feasibility of unmanned aerial vehicle multispectral imagery for nutritive value of forage oats in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳嘉昇 | zh_TW |
| dc.contributor.oralexamcommittee | Shin-Fu Tsai;Yu-Chang Tsai;Han-Tsung Wang;Chia-Sheng Chen | en |
| dc.subject.keyword | 芻料燕麥,多光譜影像,營養價值,植生指數, | zh_TW |
| dc.subject.keyword | forage oat,multispectral imagery,nutritive values,vegetation indices, | en |
| dc.relation.page | 53 | - |
| dc.identifier.doi | 10.6342/NTU202204178 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-28 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2027-09-28 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 2.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
