Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為zh_TW
dc.contributor.advisorChee-Wee Liuen
dc.contributor.author王姬zh_TW
dc.contributor.authorJi Wangen
dc.date.accessioned2023-09-15T16:15:53Z-
dc.date.available2027-09-20-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] M. Halter, "Ferroelectric memristors for neuromorphic applications: design, fabrication, and integration," ETH Zurich, 2022.
[2] Z. Dang et al., "Improved Endurance of Hf₀.₅Zr₀.₅O2-Based Ferroelectric Capacitor Through Optimizing the Ti–N Ratio in TiN Electrode," IEEE Electron Device Letters, vol. 43, no. 4, pp. 561-564, 2022.
[3] B. Max, T. Mikolajick, M. Hoffmann, S. Slesazeck, and T. Mikolajick, "Retention Characteristics of Hf0.5Zr0.5O2-Based Ferroelectric Tunnel Junctions," in 2019 IEEE 11th International Memory Workshop (IMW), 2019, pp. 1-4.
[4] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, "Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, no. 24, 2013.
[5] B. Zhao et al., "Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing," Nanomaterials (Basel), vol. 12, no. 17, Aug 30, 2022.
[6] M. H. Park et al., "Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices," Journal of Materials Chemistry C, 10.1039/D0TC01695K vol. 8, no. 31, pp. 10526-10550, 2020.
[7] M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, and T. J. I. J. o. t. E. D. S. Hiramoto, "Ferroelectric HfO2 Tunnel Junction Memory With High TER and Multi-Level Operation Featuring Metal Replacement Process," vol. 7, pp. 134-139, 2019.
[8] Y.-W. Chen and C. W. Liu, "Boost of orthorhombic population with amorphous SiO<sub>2</sub> interfacial layer—a DFT study," Semiconductor Science and Technology, vol. 37, no. 5, p. 05LT01, 2022/03/17 2022.
[9] M. H. Park et al., "Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films," Nanoscale, vol. 10, no. 2, pp. 716-725, Jan 3 2018.
[10] D. Zhao, Z. Chen, and X. Liao, "Microstructural evolution and ferroelectricity in HfO2 films," Microstructures, 2022.
[11] N. Siannas et al., "Metastable ferroelectricity driven by depolarization fields in ultrathin Hf0.5Zr0.5O2," Communications Physics, vol. 5, no. 1, p. 178, 2022/07/06, 2022.
[12] K. Y. Hsiang et al., "Unipolar Parity of Ferroelectric-Antiferroelectric Characterized by Junction Current in Crystalline Phase Hf1-xZrxO2 Diodes," Nanomaterials (Basel), vol. 11, no. 10, Oct 12, 2021.
[13] D. Lehninger et al., "Back‐End‐of‐Line Compatible Low Temperature Furnace Anneal for Ferroelectric Hafnium Zirconium Oxide Formation," Physica Status Solidi (A) Applications and Materials, vol. 217, p. 1900840, 01/14 2020.
[14] M. Y. Zhuravlev, Y. Wang, S. Maekawa, and E. Y. Tsymbal, "Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier," Applied Physics Letters, vol. 95, no. 5, 2009.
[15] Z. Zhao et al., "Engineering Hf0.5Zr0.5O2 Ferroelectric/Anti- Ferroelectric Phases With Oxygen Vacancy and Interface Energy Achieving High Remanent Polarization and Dielectric Constants," IEEE Electron Device Letters, vol. 43, no. 4, pp. 553-556, 2022.
[16] i. C. o. F. B. M. a. T. F. M. Stewart and P. Weaver, edited by M. G. Cain (Springer, Dordrecht, and p.-. 2014), "<978-1-4020-9311-1.pdf>."
[17] Radiant Technologies, Inc.web search:Support LibrarySupportUnderstanding Ferroelectric Mateirals. from https://www.ferrodevices.com/support-library/
[18] M. S. a. P. Weaver, "in Characterisation of Ferroelectric Bulk Materials and Thin Films," p. 14, 2014. Springer, Dordrecht
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89688-
dc.description.abstract鐵電材料具有可被高於矯頑電壓驅動極性翻轉的特性。其憑藉數據編輯速度快,讀寫能量低,高耐久度的特性作為新型非揮發性記憶體具有廣闊的應用前景。不同結構的鐵電材料穿隧介面的表現和其適用的量測條件均不相同。
本論文是基於二氧化鋯鉿材料之鐵電穿隧接面的電性量測和可靠度分析。利用多種電性量測手段對不同結構的鐵電穿隧界面進行測試分析,歸納其讀取性能與極化特性對開關電流及耐久度產生的影響。並針對串並聯電阻對其電性量測造成的影響進行定量分析。對電性量測結果進行分析,尋找適合的量測條件,並探究極化反轉行為對耐久度影響,有助於未來分析不同元件的電性結果並追求更高的記憶體讀取性能。
本文第二章以TIN/HZO/TIN結構鐵電穿隧介面為量測對象,介紹了P-V和I-V的量測機制,利用方波脈衝量測進行電流讀取,尋找更快的切換速度以及更低讀取電壓,同時保證良好的開關電流比率。結合上述電性量測結果篩選出適合讀取條件進行耐久性的可靠度量測。設計對照實驗研究極化反轉對耐久度的影響。最後對比兩種鐵電層厚度的電性量測及其可靠度結果。
第三章以TIN/HZO/W結構鐵電穿隧介面為量測對象,以第一部分的電性量測為基礎,結合脈衝與IV量測,設計了用於直觀探究不同脈衝條件下極化反轉對讀取電流的影響的極化量測,研究不同脈衝條件對極化反轉強度的影響,尋找更適合的讀取條件。並結合耐久度量測結果,總結其極化反轉程度對耐久度的影響。
第四部分,首先以TIN/HZO/N+GE結構鐵電穿隧介面為量測對象,針對其面積變化帶來的磁滯曲線量測結果進行分析。為了佐證分析,以TIN/HZO/TIN結構鐵電穿隧介面為量測對象,分別串聯並聯電阻進行定量量測。總結電阻及掃描電壓週期對磁滯曲線影響的規律。
zh_TW
dc.description.abstractFerroelectric materials can be polarization switching driven by voltages higher than the coercivity voltage. With its fast data programming speed, low read/write energy, and high endurance, ferroelectric materials are promising for new non-volatile memory applications. The tunneling performance and the applicable measurement conditions for different structures of ferroelectric materials are diverse.
This thesis is based on the electrical measurements and reliability analysis of the ferroelectric tunneling junction of hafnium zirconium dioxide materials. Various electrical measurement methods are used to analyze different structures of ferroelectric tunneling and to summarize their characteristics in terms of readout, polarization on the switching current, and endurance. Quantitative analysis of the effects of series and parallel resistance on electrical measurements is also performed. The electrical measurement results are analyzed to find suitable measurement conditions and to investigate the effect of polarization reversal on endurance, which will help to analyze the electrical results of different components and to pursue higher memory reading performance in the future.
The second chapter of this paper introduces the P-V, and I-V measurement mechanisms using the TiN/HZO/TiN structured ferroelectric tunneling junction as the measurement target and uses square-wave pulse measurement for current readout to find faster-switching speed and lower reading voltage while ensuring better switching current ratio. The above electrical measurement results filter out suitable reading conditions for endurance reliability measurement. A control experiment was designed to study the effect of polarization reversal on endurance. Finally, the electrical measurements of the two ferroelectric layer thicknesses and their reliability results are compared.
The third chapter uses the TiN/HZO/W structured ferroelectric tunneling interface as the measurement target. Based on the electrical measurements in the first part, the poling measurements are designed to visually investigate the effect of polarization reversal on the reading current under different pulsing conditions. The effect of polarization reversal on reading current under different pulsing conditions is investigated to find more suitable reading conditions. The effect of polarization reversal on endurance is summarized by combining the endurance measurement results.
In the fourth chapter, firstly, the TiN/HZO/n+Ge structured ferroelectric tunneling junction is used as the measurement target, and the hysteresis curves brought by the area variation are analyzed. In order to support the evaluation, the TiN/HZO/TiN structured ferroelectric tunneling junction is used as the measurement target, and the series and parallel resistances are measured separately. The resistances and sweeping voltage periods are summarized to show the effect of hysteresis curves.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:15:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-15T16:15:53Z (GMT). No. of bitstreams: 0en
dc.description.provenanceItem reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T08:57:15Z
Item was in collections:
光電工程學研究所 (ID: cc40f4b5-f851-4ace-b877-79d3e5c5d545)
No. of bitstreams: 1
ntu-110-2.pdf: 5371006 bytes, checksum: d5bc80aa40ec60f9bc0f4d8f16d4ea36 (MD5)
en
dc.description.provenanceItem reinstated by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T09:38:50Z
Item was in collections:
光電工程學研究所 (ID: cc40f4b5-f851-4ace-b877-79d3e5c5d545)
No. of bitstreams: 1
ntu-110-2.pdf: 5371006 bytes, checksum: d5bc80aa40ec60f9bc0f4d8f16d4ea36 (MD5)
en
dc.description.tableofcontents口試委員會審定書 I
致謝 III
摘要 IV
Abstract V
Table of Contents VII
List of Figures X
List of Tables XIV
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 Ferroelectric Materials 2
1.1.2 Mechanism of FTJ 3
1.2 Thesis Organization 7
Chapter 2 The electrical analysis and reliability test of TiN/HZO/TiN (MFM) HZO FTJ 9
2.1 Introduction 9
2.2 Fabrication of TiN/HZO/TiN (MFM) FTJ 9
2.3 The Electrical Measurements and Analysis 11
2.3.1 P-V sweep measurement 11
2.3.2 IV sweep measurement 17
2.3.3 Pulse measurement of On-Off current ratio 20
2.3.4 Endurance measurement 23
2.3.4.1 Unipolar endurance 24
2.3.4.2 Bipolar endurance 26
2.3.5 Comparison of measurement results between different HZO thicknesses 31
2.3.5.1 P-V sweep measurement 31
2.3.5.2 Pulse measurement of on-off current 33
2.4 Summary 34
Chapter 3 The electrical analysis and reliability test of TiN/HZO/W (MFM) HZO FTJ 36
3.1 Introduction 36
3.2 Fabrication of TiN/HZO/W (MFM) FTJ 36
3.3 The Electrical Measurements and Analysis 37
3.3.1 P-V sweep measurement 37
3.3.2 I-V sweep measurement 40
3.4 Pulse measurement of on-off current 42
3.4.1 Poling measurement 45
3.4.2 Endurance measurement 55
3.4.3 Analysis of poling measurements and combing of endurance 61
3.5 Summary 63
Chapter 4 The electrical analysis and reliability test of MFS HZO FTJ 65
4.1 Introduction 65
4.2 Fabrication of TiN/HZO/n+Ge (MFS) 65
4.3 Electrical measurements with different areas 66
4.4 Analysis of P-V loop measurement when MFM FTJ series and parallel resistors. 69
4.4.1 Series resistors 69
4.4.2 Parallel resistors 74
4.5 Summary 81
Chapter 5 Summary 83
5.1 Summary 83
5.2 Future work 84
5.3 Reference 84
-
dc.language.isoen-
dc.subject極化量測zh_TW
dc.subject二氧化鋯鉿zh_TW
dc.subject鐵電穿隧接面zh_TW
dc.subjectP-V量测zh_TW
dc.subjectI-V掃描曲线zh_TW
dc.subject穿隧電流zh_TW
dc.subject鐵電電流zh_TW
dc.subject耐久度zh_TW
dc.subject極性翻轉zh_TW
dc.subjectenduranceen
dc.subjectpoling measurementen
dc.subjectI-V sweep curveen
dc.subjectP-V hysteresis loopen
dc.subjectferroelectric tunneling junctionen
dc.subjecthafnium zirconium dioxide(HZO)en
dc.subjecttunneling currenten
dc.subjectpolarization switchingen
dc.subjectferroelectric currenten
dc.title二氧化鋯鉿材料之鐵電穿隧接面之電性分析及可靠度測試zh_TW
dc.titleThe Electrical Characterization and Reliability Test of HZO Ferroelectric Tunneling Junctionsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖洺漢zh_TW
dc.contributor.oralexamcommitteeMin-Hung Lee;Jyi-Tsong Lin;Chu-Hsuan Lin;Ming-Han Liaoen
dc.subject.keyword二氧化鋯鉿,鐵電穿隧接面,P-V量测,I-V掃描曲线,極化量測,極性翻轉,耐久度,鐵電電流,穿隧電流,zh_TW
dc.subject.keywordhafnium zirconium dioxide(HZO),ferroelectric tunneling junction,P-V hysteresis loop,I-V sweep curve,poling measurement,polarization switching,endurance,ferroelectric current,tunneling current,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202203365-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2027-09-20-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
5.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved