請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89684
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林立虹 | zh_TW |
dc.contributor.advisor | Li-Hung Lin | en |
dc.contributor.author | 楊皓 | zh_TW |
dc.contributor.author | Hao Yang | en |
dc.date.accessioned | 2023-09-15T16:14:49Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 陳肇夏 (1998) 《臺灣地質系列第11號:臺灣的變質岩》。中央地質調查所,共345頁。
王奕傑 (2019) 卑南溪流域化學風化作用對二氧化碳收支的影響,國立臺灣大學海洋研究所碩士論文,共98頁。 陳文山 (2016) 《臺灣地質概論》。中華民國地質學會,共204頁。 陳沛壕 (2017) 亞熱帶造山帶之化學風化及其控制因子,國立台灣大學地理環境資源學系碩士論文,共81頁。 水利署 (2014-2021) 臺灣水文年報總冊,經濟部水利署。 Balci, N., Shanks III, W. C., Mayer, B., & Mandernack, K. W. (2007). Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochimica et Cosmochimica Acta, 71(15), 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017 Berner RA, Lasaga AC, Garrels RM (1983) The carbonate–silicate geochemical cycle and its effect on atmosphericcarbon-dioxide over the past 100 million years. Am J Sci 283:641–683. https://doi.org/10.2475/ajs.283.7.641 Berner, R. A. (2003). The long-term carbon cycle, fossil fuels and atmospheric composition. Nature, 426(6964), 323-326. Blattmann, T. M., Wang, S. L., Lupker, M., Märki, L., Haghipour, N., Wacker, L., Chung, L. H., Bernasconi, S. M., Plötze, M., & Eglinton, T. I. (2019). Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39272-5 Brady, P. V. (1991). The effect of silicate weathering on global temperature and atmospheric CO2. Journal of Geophysical Research: Solid Earth, 96(B11), 18101-18106. Broecker, W. S., Gerard, R., Ewing, M., & Heezen, B. C. (1960). Natural radiocarbon in the Atlantic Ocean. Journal of Geophysical Research, 65(9), 2903-2931. Bufe, A., Hovius, N., Emberson, R., Rugenstein, J. K., Galy, A., Hassenruck-Gudipati, H. J., & Chang, J.-M. (2021). Co-variation of silicate, carbonate and sulfide weathering drives CO 2 release with erosion. Nature Geoscience, 14(4), 211-216. Burke, A., Present, T. M., Paris, G., Rae, E. C. M., Sandilands, B. H., Gaillardet, J., Peucker-Ehrenbrink, B., Fischer, W. W., McClelland, J. W., Spencer, R. G. M., Voss, B. M., & Adkins, J. F. (2018). Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth and Planetary Science Letters, 496, 168-177. https://doi.org/10.1016/j.epsl.2018.05.022 Calmels, D., Gaillardet, J., Brenot, A., & France-Lanord, C. (2007). Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 35(11), 1003-1006. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M.-C., & Chapman, H. (2011). Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters, 303(1-2), 48-58. https://doi.org/10.1016/j.epsl.2010.12.032 Cao, Y., Tang, C., Song, X., & Liu, C. (2015). Major ion chemistry, chemical weathering and CO2 consumption in the Songhua River basin, Northeast China. Environmental Earth Sciences, 73(11), 7505-7516. https://doi.org/10.1007/s12665-014-3921-2 Cao, Y., Xuan, Y., Tang, C., Guan, S., & Peng, Y. (2020). Temporary and net sinks of atmospheric CO 2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology. Biogeosciences, 17(14), 3875-3890. Chen, W.-S., Huang, Y.-C., Liu, C.-H., Feng, H.-T., Chung, S.-L., & Lee, Y.-H. (2016). UPb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 686, 68-81. https://doi.org/https://doi.org/10.1016/j.tecto.2016.07.021 Chen, W. S., Chung, S. L., Chou, H. Y., Zugeerbai, Z., Shao, W. Y., & Lee, Y. H. (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle‐late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188-206. Chung, C.-H., You, C.-F., & Chu, H.-Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., and Zak, I., 1980, The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation: Chemical Geology, v. 28, no. 3-4, p. 199-260. Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica et cosmochimica acta, 12(1-2), 133-149. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., & Lin, J.-C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. https://doi.org/10.1038/nature02150 Das, A., Chung, C.-H., & You, C.-F. (2012). Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophysical Research Letters, 39(12), n/a-n/a. https://doi.org/10.1029/2012gl051549 Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016a). Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nature Geoscience, 9(1), 42-45. https://doi.org/10.1038/ngeo2600 Emberson, R., Hovius, N., Galy, A., & Marc, O. (2016b). Oxidation of sulfides and rapid weathering in recent landslides. Earth Surface Dynamics, 4(3), 727-742. https://doi.org/10.5194/esurf-4-727-2016 Fellin, M. G., Chen, C. Y., Willett, S. D., Christl, M., & Chen, Y. G. (2017). Erosion rates across space and timescales from a multi-proxy study of rivers of eastern Taiwan. Global and Planetary Change, 157, 174-193. https://doi.org/10.1016/j.gloplacha.2017.07.012 Gaillardet, J., Calmels, D., Romero-Mujalli, G., Zakharova, E., & Hartmann, J. (2019). Global climate control on carbonate weathering intensity. Chemical Geology, 527, 118762. https://doi.org/https://doi.org/10.1016/j.chemgeo.2018.05.009 Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1), 3-30. https://doi.org/https://doi.org/10.1016/S0009-2541(99)00031-5 Gibbs, R.J. (1970) Mechanisms Controlling World Water Chemistry. Science 170, 1088-1090 Goldsmith, S. (2009). Physical and Chemical Weathering Processes and Associated CO 2 Consumption from Small Mountainous Rivers on High-Standing Islands. Goudie, A. S., & Viles, H. A. (2012). Weathering and the global carbon cycle: Geomorphological perspectives. Earth-Science Reviews, 113(1-2), 59-71. Hercod D. J., Brady P. V., and Gregory R. T. (1998) Catchment-scale coupling between pyrite oxidation and calcite weathering. Chem. Geol. 151, 259–276. Heidel, C., and Tichomirowa, M., 2011, The isotopic composition of sulfate from anaerobic and low oxygen pyrite oxidation experiments with ferric iron - New insights into oxidation mechanisms: Chemical Geology, v. 281, no. 3-4, p. 305-316. Hilton, R. G., & West, A. J. (2020). Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment, 1(6), 284-299. https://doi.org/10.1038/s43017-020-0058-6 Ho, C.S. (2006) An Introduction To The Geology of Taiwan Explanatory Text of The Geologic Map of Taiwan. Central Geological Survey, MOEA, Taiwan. Hoefs, J. (2018). Stable Isotope Geochemistry. https://doi.org/https://doi.org/10.1007/978-3-319-78527-1 Jacobson, A. D., & Blum, J. D. (2003). Relationship between mechanical erosion and atmospheric CO2 consumption in the New Zealand Southern Alps. Geology, 31(10), 865-868. Johnson, N. M., Reynolds, R. C., & Likens, G. E. (1972). Atmospheric sulfur: its effect on the chemical weathering of New England. Science, 177(4048), 514-516. Karim, A., and Veizer, J., 2000, Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes: Chemical Geology, v. 170, no. 1-4, p.153-177. Kendall, C., & Coplen, T. B. (2001). Distribution of oxygen‐18 and deuterium in river waters across the United States. Hydrological processes, 15(7), 1363-1393. Krouse, H. R., and Mayer, B., 2000, Sulphur and Oxygen Isotopes in Sulphate., In: Cook P.G., Herczeg A.L. (eds) Environmental Tracers in Subsurface Hydrology., US, Boston, MA. Lasaga, A. C. (1984). Chemical kinetics of water‐rock interactions. Journal of Geophysical Research: Solid Earth, 89(B6), 4009-4025. Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., & Nagy, K. L. (1994). Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 58(10), 2361-2386. https://doi.org/https://doi.org/10.1016/0016-7037(94)90016-7 Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR,Malcolm B (2014) Rapid soil production and weathering inthe Southern Alps, New Zealand. Science 343:637–640.https://doi.org/10.1126/science.1244908 Lerman, A., Wu, L. L., & Mackenzie, F. T. (2007). CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2), 326-350. Lloret, E., Dessert, C., Gaillardet, J., Alberic, P., Crispi, O., Chaduteau, C., & Benedetti, M. F. (2011). Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chemical Geology, 280(1-2), 65-78. Lyons, W. B., Carey, A. E., Hicks, D. M., & Nezat, C. A. (2005). Chemical weathering in highsediment-yielding watersheds, New Zealand. Journal of Geophysical Research-Earth Surface, 110(F1). Lyons, W. B., Nezat, C. A., Carey, A. E., & Hicks, D. M. (2002). Organic carbon fluxes to the ocean from high-standing islands. Geology, 30(5), 443-446. Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401-428. Meyer, K. J., Carey, A. E., & You, C.-F. (2017). Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochimica et Cosmochimica Acta, 215, 404-420. https://doi.org/https://doi.org/10.1016/j.gca.2017.07.015 Nesbitt, H. W., & Markovics, G. (1980). Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659-1666. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523-1534. https://doi.org/https://doi.org/10.1016/0016-7037(84)90408-3 Opdyke, B. N., & Walker, J. C. G. (1992). Return of the Coral-Reef Hypothesis - Basin to Shelf Partitioning of CaCO3 and Its Effect on Atmospheric CO2. Geology, 20(8), 733-736. Ryu, J. S., Lee, K. S., Chang, H. W., & Shin, H. S. (2008). Chemical weathering of carbonates and silicates in the Han River basin, South Korea. Chemical Geology, 247(1-2), 66-80. Pawellek, F., Frauenstein, F., and Veizer, J., 2002, Hydrochemistry and isotope geochemistry of the upper Danube River: Geochimica Et Cosmochimica Acta, v. 66, no. 21, p. 3839-3853. Pearson, P., Palmer, M. Atmospheric carbon dioxide concentrations over the past 60 million years . Nature 406, 695–699 (2000). https://doi.org/10.1038/35021000 Peng, T. R., Wang, C. H., Huang, C. C., Fei, L. Y., Chen, C. T. A., & Hwong, J. L. (2010). Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters, 289(3-4), 357-366. Sarmiento, J. L. (1993). Ocean Carbon-Cycle. Chemical & Engineering News, 71(22), 30-43. Spence J, Telmer K (2005) The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, d13CDIC, and d34SSO4 in rivers of the Canadian Cordillera. Geochim Cosmochim Acta 69:5441–5458. https://doi.org/10.1016/j.gca.2005.07.011 Sun, H., Han, J., Li, D., Zhang, S., & Lu, X. (2010). Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China. Science of the total environment, 408(20), 4749-4760. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6), 67-89. Stallard, R. F., & Edmond, J. M. (1981). Geochemistry of the Amazon .1. Precipitation Chemistry and the Marine Contribution to the Dissolved-Load at the Time of Peak Discharge. Journal of Geophysical Research-Oceans, 86(Nc10), 9844-9858. Taylor, R., & Howard, K. (2000). A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeology Journal, 8(3), 279-294. Torres, M. A., West, A. J., & Li, G. (2014). Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature, 507(7492), 346-349. https://doi.org/10.1038/nature13030 Taylor, B. E., Wheeler, M. C., and Nordstrom, D. K., 1984, Isotope Composition of Sulfate in Acid-Mine Drainage as Measure of Bacterial Oxidation: Nature, v. 308, no. 5959, p. 538-541. Turchyn, A. V., Tipper, E. T., Galy, A., Lo, J. K., and Bickle, M. J., 2013, Isotope evidence for secondary sulfide precipitation along the Marsyandi River, Nepal, Himalayas: Earth and Planetary Science Letters, v. 374, p. 36-46. Vaneverdingen, R. O., and Krouse, H. R., 1985, Isotope Composition of Sulfates Generated by Bacterial and Abiological Oxidation: Nature, v. 315, no. 6018, p. 395-396. von Strandmann, P. A. P., Porcelli, D., James, R. H., Van Calsteren, P., Schaefer, B., Cartwright, I., ... & Burton, K. W. (2014). Chemical weathering processes in the Great Artesian Basin: Evidence from lithium and silicon isotopes. Earth and Planetary Science Letters, 406, 24-36. Wang, C. H., Liou, Y. S., Chen, P. H., & Huang, J. C. (2021). Tropical cyclones likely enhance chemical weathering but suppress atmospheric CO2 consumption in landslide-dominated catchments. Biogeochemistry, 154(3), 537-554. https://doi.org/10.1007/s10533-021-00805-8 White, A. F., & Brantley, S. L. (1995). Chemical weathering rates of silicate minerals: An overview. Chemical Weathering Rates of Silicate Minerals, 31, 1-22. Yoshimura, K., Nakao, S., Noto, M., Inokura, Y., Urata, K., Chen, M., & Lin, P. W. (2001).Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan - chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chemical Geology, 177(3-4), 415-430. https://doi.org/10.1016/S0009-2541(00)00423-X 其他資料來源 Intergovernmental Panel on Climate Change https://www.ipcc.ch/ National Oceanic & Atmospheric Administration Earth System Research Laboratory. https://reurl.cc/yMLlOD https://reurl.cc/dWyD4M | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89684 | - |
dc.description.abstract | 化學風化作用改變岩石中的礦物或化學成分,並釋放其組成成分至土壤、地下水,透過水的循環匯集到河流,最終排放至大海。其中溶解反應的進行,涉及二氧化碳的匯入或排出至大氣,對於地球系統的元素與碳循環,扮演著重要的角色。台灣位於活動構造造山帶,伴隨快速的抬升與侵蝕作用,亦呈現高於大河系統數個數量級的化學風化速率,因而經常作為研究小河集水區化學風化作用的模式區域。然而不同集水區的分佈與發育,受不同的構造活動與地質特徵的影響,對於化學風化機制與速率在時空的變化與可能的控制因子仍僅有有限的認識。
本研究分析台灣主要18條河流於乾濕季的水質,透過端成分混合模型計算,進而探討流經不同地層或岩性之河域化學風化的反應特徵與速率。研究結果顯示,除了海岸山脈集水區陽離子貢獻主要由矽酸岩風化產生外 (61-88 %),全台灣河域風化作用是以碳酸岩風化為主,大多數河域碳酸岩化貢獻陽離子當量濃度達總量80 %以上,且其產生的陽離子當量濃度與硫酸鹽濃度呈高度正相關 (R2=0.72)。而根據穩定同位素資料,硫酸根主要為黃鐵礦氧化所產生,並且硫酸根中的氧主要源自於河水中的氧而非氧氣。若以區域區分,西部河域化學風化受岩性、崩塌率及乾濕季影響,碳酸岩風化所產生的陽離子當量濃度,隨集水區變質岩的比例增加而上升,並且乾、濕季都與崩塌率呈現高度正相關 (R2=0.89及0.76);矽酸岩風化離子當量變化相對較小,僅在岩性涵蓋了西南部麓山帶的集水區,在乾季時發現較高矽酸岩風化產生的陽離子當量濃度。相較之下,東部河域化學風化則與崩塌率呈現正相關,而在海岸山脈隨著集水區內沈積岩的比例增加,矽酸岩風化的程度也會上升。就地質時間尺度的碳循環,台灣大部分的集水區的化學風化作用,是造成大氣二氧化碳濃度的增加,僅有在部分西南部及海岸山脈的集水區為消耗大氣二氧化碳。 | zh_TW |
dc.description.abstract | Chemical weathering alters mineral or chemical compositions of rocks and releases their constitute elements into soil, groundwater, and through water cycle to rivers prior to eventually reaching the ocean. The dissolution reactions, which either consume or export CO2, play an important role in regulating carbon cycles embedded within the Earth system. Taiwan is located in an active orogenic belt with rapid uplift and erosion. Chemical weathering rates exceed those of large river systems by several orders of magnitude, thereby often being considered as a model for studying chemical weathering in small river basins. While the distribution and development of different catchments are influenced by different tectonic activities and geological features, the exact mechanisms and rates of chemical weathering and possible controlling factors are still unclear.
This study analyzed aqueous chemistry of 18 major rivers in Taiwan, and further investigated the characteristics and rates of chemical weathering processes for rivers flowing through different strata or lithologies. The results show that chemical weathering in most catchments is dominated by carbonate dissolution, contributing more than 80% of the total cation equivalents. Exceptions occurred for the Coastal Range where 61-88% of the total cation equivalents were produced from silicate weathering. The cation equivalents derived from carbonate weathering were also highly positively correlated with sulfate concentration (R2=0.72). Analyses of stable isotopes of sulfate yielded a data pattern that suggests the production of sulfate from the oxidation of pyrite, and the oxygen in sulfate mainly derived from the oxygen in the river water rather than from atmospheric dioxygen. Furthermore, weathering characteristics varied with lithology, landslide ratio and wet/dry seasons at different degrees. For western catchments, the cation equivalents from carbonate weathering increased with the proportions of metamorphic rocks and with the landslide ratios (R2 of 0.89 and 0.76 for dry and wet seasons). In contrast, the charge equivalent variation associated with silicate weathering was relatively small with higher charge equivalents only found in the dry season in the catchment draining the southern Western Foothill. For eastern catchments, the cation equivalents from carbonate weathering increased with the landslide ratios, while the proportions of cations contributed by silicate weathering increased with the proportions of sedimentary formations in the Coastal Range . Over a geological time scale, chemical weathering renders the net export of CO2 into the atmosphere from the majority of catchments but vice versa only from some southwestern catchments and the Coastal Range. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:14:49Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:14:49Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 viii 第一章、研究動機 1 1.1 影響陸地碳循環收支之因素 1 1.2 化學風化對於全球無機碳循環之重要性 3 1.3黃鐵礦氧化作用之同位素特徵 5 1.4台灣流域化學風化特徵 8 1.5研究目標 11 第二章、研究地點與分析方法 12 2.1 研究區域概況 12 2.2 採樣方法 14 2.3 實驗分析方法 15 2.3.1 陰離子分析 15 2.3.2 陽離子分析 15 2.3.3 穩定同位素分析 16 第三章、研究結果 21 3.1河水陰、陽離子組成 21 3.2 河水溶質於不同河系時、空間分布上的差異 21 3.3 河水硫酸鹽同位素組成 26 3.4 河水氫氧同位素組成 31 3.5 台灣河域地形參數及地質資料 32 第四章、討論 36 4.3台灣河域化學風化與驅動無機酸源特徵 43 4.3.1河水化學組成 43 4.3.2驅動岩石化學風化的無機酸類 45 4.4集水區化學風化途徑貢獻之估算 48 4.4.1 估算矽酸岩與碳酸岩風化對河水陽離子當量的貢獻 48 4.4.2 計算岩石化學風化受硫酸及碳酸驅動所產的陽離子比例 49 4.4.3 台灣集水區風化作用對於大氣二氧化碳收支的影響情形 50 4.5台灣河域化學風化特徵的時空變化與控制因子 61 4.5.1 岩性對台灣河域化學風化的控制 61 4.5.2 地表地形對台灣河域化學風化的控制 64 4.6台灣主要河域的SO42- 輸出通量及化學風化速率 70 4.6.1 台灣河川硫酸根輸出通量 70 4.6.2 台灣主要河域化學風化速率與全球其他河川比較 71 第五章、結論 74 參考文獻 75 附錄 81 | - |
dc.language.iso | zh_TW | - |
dc.title | 台灣主要河域化學風化作用的特徵及其控制因子 | zh_TW |
dc.title | Characteristics of chemical weathering and its controlling factors in major catchments of Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 郭欽慧 | zh_TW |
dc.contributor.oralexamcommittee | Pei-Ling Wang;Ching-Chou Fu;Hung-Chun Chao;Ching-Huei Kuo | en |
dc.subject.keyword | 化學風化,快速造山帶河域系統,台灣, | zh_TW |
dc.subject.keyword | chemical weathering,rapidly uplifting catchment,Taiwan, | en |
dc.relation.page | 94 | - |
dc.identifier.doi | 10.6342/NTU202204109 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2025-09-26 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2025-09-26 | 4.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。