請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89680
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董致韡 | zh_TW |
dc.contributor.advisor | Chih-Wei Tung | en |
dc.contributor.author | 杜芸真 | zh_TW |
dc.contributor.author | Yun-Chen Du | en |
dc.date.accessioned | 2023-09-15T16:13:43Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Agostini, F., Zagalak, J., Attig, J., Ule, J. & Luscombe, N. M. (2021). Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biology 22(1): 136.
Ahmad, M. S., Wu, B., Wang, H. & Kang, D. (2020). Field screening of rice germplasm (Oryza sativa L. ssp. japonica) based on days to flowering for drought escape. Plants 9(5): 609. Arai-Sanoh, Y., Takai, T., Yoshinaga, S., Nakano, H., Kojima, M., Sakakibara, H., Kondo, M. & Uga, Y. (2014). Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Scientific Reports 4(1): 1-6. Basnayake, J., Fukai, S. & Ouk, M. (2006).Contribution of potential yield, drought tolerance and escape to adaptation of 15 rice varieties in rainfed lowlands in Cambodia. In Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Birsbane, Australia. Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y. & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19): 2633-2635. Cai, X.-T., Xu, P., Zhao, P.-X., Liu, R., Yu, L.-H. & Xiang, C.-B. (2014). Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications 5(1): 1-13. Caine, R. S., Yin, X., Sloan, J., Harrison, E. L., Mohammed, U., Fulton, T., Biswal, A. K., Dionora, J., Chater, C. C. & Coe, R. A. (2019). Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytologist 221(1): 371-384. Chen, C.-W., Yang, Y.-W., Lur, H.-S., Tsai, Y.-G. & Chang, M.-C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant and Cell Physiology 47(1): 1-13. Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17): i884-i890. Chen, Y., Fan, X., Song, W., Zhang, Y. & Xu, G. (2012). Over‐expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant biotechnology journal 10(2): 139-149. Chow, C.-N., Lee, T.-Y., Hung, Y.-C., Li, G.-Z., Tseng, K.-C., Liu, Y.-H., Kuo, P.-L., Zheng, H.-Q. & Chang, W.-C. (2019). PlantPAN3. 0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic acids research 47(D1): D1155-D1163. Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X. & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2): 80-92. Corti Monzón, G., Pinedo, M., Lamattina, L. & De La Canal, L. (2012). Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regulation 66(2): 129-136. Darvasi, A. & Soller, M. (1992). Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theoretical and applied Genetics 85(2): 353-359. Dingkuhn, M., Cruz, R. & O'Toole, J. (1989). Net photosynthesis, water use efficiency, leaf water potential and leaf rolling as affected by water deficit in tropical upland rice. Australian Journal of Agricultural Research 40(6): 1171-1181. Du, H., Zhu, J., Su, H., Huang, M., Wang, H., Ding, S., Zhang, B., Luo, A., Wei, S. & Tian, X. (2017). Bulked segregant RNA-Seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in maize. Frontiers in plant science 8: 1022. Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. (2000). The WRKY superfamily of plant transcription factors. Trends in plant science 5(5): 199-206. Fitoussi, N., Borrego, E., Kolomiets, M. V., Qing, X., Bucki, P., Sela, N., Belausov, E. & Braun Miyara, S. (2021). Oxylipins are implicated as communication signals in tomato–root-knot nematode (Meloidogyne javanica) interaction. Scientific Reports 11(1): 1-16. Frascaroli, E. & Landi, P. (2016). Cold tolerance in field conditions, its inheritance, agronomic performance and genetic structure of maize lines divergently selected for germination at low temperature. Euphytica 209(3): 771-788. Fridman, Y., Elkouby, L., Holland, N., Vragović, K., Elbaum, R. & Savaldi-Goldstein, S. (2014). Root growth is modulated by differential hormonal sensitivity in neighboring cells. Genes & Development 28(8): 912-920. Guo, Z., Cai, L., Chen, Z., Wang, R., Zhang, L., Guan, S., Zhang, S., Ma, W., Liu, C. & Pan, G. (2020). Identification of candidate genes controlling chilling tolerance of rice in the cold region at the booting stage by BSA-Seq and RNA-Seq. Royal Society open science 7(11): 201081. Hieno, A., Naznin, H. A., Hyakumachi, M., Sakurai, T., Tokizawa, M., Koyama, H., Sato, N., Nishiyama, T., Hasebe, M. & Zimmer, A. D. (2014). ppdb: plant promoter database version 3.0. Nucleic acids research 42(D1): D1188-D1192. Higo, K., Ugawa, Y., Iwamoto, M. & Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic acids research 27(1): 297-300. Hong, S. K., Aoki, T., Kitano, H., Satoh, H. & Nagato, Y. (1995). Phenotypic diversity of 188 rice embryo mutants. Developmental Genetics 16(4): 298-310. Hsu, S.-K. & Tung, C.-W. (2015). Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice 8(1): 1-12. Huang, L., Zhang, F., Wang, W., Zhou, Y., Fu, B. & Li, Z. (2014). Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC genomics 15(1): 1-16. Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q. & Huang, T. (2009). High-throughput genotyping by whole-genome resequencing. Genome research 19(6): 1068-1076. Imerovski, I., Dedić, B., Cvejić, S., Miladinović, D., Jocić, S., Owens, G. L., Tubić, N. K. & Rieseberg, L. H. (2019). BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Molecular Breeding 39(3): 1-15. Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S. & Takahashi, M. (2006). Rice plants take up iron as an Fe3+‐phytosiderophore and as Fe2+. The Plant Journal 45(3): 335-346. Jongdee, B., Fukai, S. & Cooper, M. (2002). Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field crops research 76(2-3): 153-163. Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J. & Zhou, S. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1): 1-10. Kawahara, Y., Oono, Y., Wakimoto, H., Ogata, J., Kanamori, H., Sasaki, H., Mori, S., Matsumoto, T. & Itoh, T. (2016). TENOR: database for comprehensive mRNA-Seq experiments in rice. Plant and Cell Physiology 57(1): e7-e7. Kawai, T., Shibata, K., Akahoshi, R., Nishiuchi, S., Takahashi, H., Nakazono, M., Kojima, T., Nosaka-Takahashi, M., Sato, Y. & Toyoda, A. (2022). WUSCHEL-related homeobox family genes in rice control lateral root primordium size. Proceedings of the National Academy of Sciences 119(1). Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature biotechnology 37(8): 907-915. Kitomi, Y., Inahashi, H., Takehisa, H., Sato, Y. & Inukai, Y. (2012). OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice. Plant Science 190: 116-122. Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H. & Inukai, Y. (2011). The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type‐A response regulator of cytokinin signaling. The Plant Journal 67(3): 472-484. Kou, C.-H. (Ed) (2005). Laboratory manual for physiological studies of plants. Wu-Nan Book Inc. Taipei, Taiwan. (Chinese book) Lander, E. S. & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1): 185-199. Lee, H., Cha, J., Choi, C., Choi, N., Ji, H.-S., Park, S. R., Lee, S. & Hwang, D.-J. (2018). Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice 11(1): 1-12. Lee, H.-I., Ho, H.-A. & Kao, C.-H. (2014). A new simple method for improving QTL mapping under selective genotyping. Genetics 198(4): 1685-1698. Lee, S. & An, G. (2009). Over‐expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, cell & environment 32(4): 408-416. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research 30(1): 325-327. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25(16): 2078-2079. Li, J., Yang, Y., Chai, M., Ren, M., Yuan, J., Yang, W., Dong, Y., Liu, B., Jian, Q. & Wang, S. (2020). Gibberellins modulate local auxin biosynthesis and polar auxin transport by negatively affecting flavonoid biosynthesis in the root tips of rice. Plant Science 298: 110545. Liu, C. & Zhang, T. (2017). Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC genomics 18(1): 1-16. Liu, C., Zhou, Q., Dong, L., Wang, H., Liu, F., Weng, J., Li, X. & Xie, C. (2016). Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC genomics 17(1): 1-10. Liu, F., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D. & Wu, G. (2015). Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. Journal of experimental botany 66(19): 5663-5681. Liu, W., Zhao, B.-G., Chao, Q., Wang, B., Zhang, Q., Zhang, C., Li, S., Jin, F., Yang, D. & Li, X. (2020). The maize AP2/EREBP transcription factor ZmEREB160 enhances drought tolerance in Arabidopsis. Tropical Plant Biology 13(3): 251-261. Lo, S.-F., Yang, S.-Y., Chen, K.-T., Hsing, Y.-I., Zeevaart, J. A., Chen, L.-J. & Yu, S.-M. (2008). A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20(10): 2603-2618. Mambani, B. & Lal, R. (1983). Response of upland rice varieties to drought stress. Plant and Soil 73(1): 73-94. Mansueto, L., Fuentes, R. R., Borja, F. N., Detras, J., Abriol-Santos, J. M., Chebotarov, D., Sanciangco, M., Palis, K., Copetti, D. & Poliakov, A. (2017). Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic acids research 45(D1): D1075-D1081. Martinez, S. A., Shorinola, O., Conselman, S., See, D., Skinner, D. Z., Uauy, C. & Steber, C. M. (2020). Exome sequencing of bulked segregants identified a novel TaMKK3-A allele linked to the wheat ERA8 ABA-hypersensitive germination phenotype. Theoretical and applied Genetics 133(3): 719-736. McCord, P., Glynn, N. & Comstock, J. (2019). Identifying markers for resistance to sugarcane orange rust (Puccinia kuehnii) via selective genotyping and capture sequencing. Euphytica 215(9): 1-14. Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G. Y. & Myles, S. (2015). LinkImpute: Fast and Accurate Genotype Imputation for Nonmodel Organisms. G3 (Bethesda) 5(11): 2383-2390. Mu, P., Li, Z., Li, C., Zhang, H., Wu, C., Li, C. & Wang, X. (2003). QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chinese Science Bulletin 48(24): 2718-2724. Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E. & Mattana, M. (2008). Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant cell reports 27(10): 1677-1686. Phansak, P., Soonsuwon, W., Hyten, D. L., Song, Q., Cregan, P. B., Graef, G. L. & Specht, J. E. (2016). Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3: Genes, Genomes, Genetics 6(6): 1635-1648. Price, A. H., Steele, K., Moore, B. & Jones, R. (2002). Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes: II. Mapping quantitative trait loci for root morphology and distribution. Field crops research 76(1): 25-43. Pujol, M., Alexiou, K. G., Fontaine, A.-S., Mayor, P., Miras, M., Jahrmann, T., Garcia-Mas, J. & Aranda, M. A. (2019). Mapping cucumber vein yellowing virus resistance in cucumber (Cucumis sativus L.) by using BSA-seq analysis. Frontiers in plant science 10: 1583. Qin, H., Pandey, B. K., Li, Y., Huang, G., Wang, J., Quan, R., Zhou, J., Zhou, Y., Miao, Y. & Zhang, D. (2022). Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. The Plant Cell 34(4): 1273-1288. Qin, H., Wang, J., Chen, X., Wang, F., Peng, P., Zhou, Y., Miao, Y., Zhang, Y., Gao, Y. & Qi, Y. (2019). Rice OsDOF15 contributes to ethylene‐inhibited primary root elongation under salt stress. New Phytologist 223(2): 798-813. Ranocha, P., Denancé, N., Vanholme, R., Freydier, A., Martinez, Y., Hoffmann, L., Köhler, L., Pouzet, C., Renou, J. P. & Sundberg, B. (2010). Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast‐localized protein required for secondary wall formation in fibers. The Plant Journal 63(3): 469-483. Rijsberman, F. R. (2006). Water scarcity: fact or fiction? Agricultural water management 80(1-3): 5-22. Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., Wakimoto, H., Yang, C.-c., Iwamoto, M. & Abe, T. (2013). Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant and Cell Physiology 54(2): e6-e6. Scarpella, E., Rueb, S. & Meijer, A. H. (2003). The RADICLELESS1 gene is required for vascular pattern formation in rice. 130(4): 645–658. Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M. & Takuno, S. (2013). QTL‐seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal 74(1): 174-183. Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W. & Su, Z. (2017). agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic acids research 45(W1): W122-W129. Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K. & Kanno, N. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics 45(9): 1097-1102. Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E. & Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal 37(1): 115-127. Vellosillo, T., Martínez, M., López, M. A., Vicente, J., Cascón, T., Dolan, L., Hamberg, M. & Castresana, C. (2007). Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. The Plant Cell 19(3): 831-846. Vijayaraghavareddy, P., Lekshmy, S. V., Struik, P. C., Makarla, U., Yin, X. & Sreeman, S. (2022). Production and scavenging of reactive oxygen species confer to differential sensitivity of rice and wheat to drought stress. Crop and Environment 1(1): 15-23. Vogel, G., LaPlant, K. E., Mazourek, M., Gore, M. A. & Smart, C. D. (2021). A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theoretical and applied Genetics 134(4): 1015-1031. Wang, J.-Y., Chen, J.-D., Wang, S.-L., Chen, L., Ma, C.-L. & Yao, M.-Z. (2020a). Repressed gene expression of photosynthetic antenna proteins associated with yellow leaf variation as revealed by bulked segregant RNA-seq in tea plant Camellia sinensis. Journal of Agricultural and Food Chemistry 68(30): 8068-8079. Wang, Q., Zhang, X., Lin, S., Yang, S., Yan, X., Bendahmane, M., Bao, M. & Fu, X. (2020b). Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. Journal of experimental botany 71(6): 1915-1927. Wang, S., Ichii, M., Taketa, S., Xu, L., Xia, K. & Zhou, X. (2002). Lateral root formation in rice (Oryza sativa): promotion effect of jasmonic acid. Journal of Plant Physiology 159(8): 827-832. Wen, C.-H. (2019).Detection of quantitative trait loci associated with rice seedling drought tolerance phenotypes. In Department of Agronomy College of Bioresources and Agriculture: National Taiwan University. Wu, M.-W., Zhao, H., Zhang, J.-D., Guo, L. & Liu, C.-M. (2020). RADICLELESS 1 (RL1)-mediated nad4 intron 1 splicing is crucial for embryo and endosperm development in rice (Oryza sativa L.). Biochemical and Biophysical Research Communications 523(1): 220-225. Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., Li, Y., Zhang, H., Ali, J. & Li, Z. (2014). Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PloS one 9(3): e92913. Xu, J.-C., Li, J.-Z., Zheng, X.-W., Zou, L.-X. & Zhu, L.-H. (2001). QTL mapping of the root traits in rice seedling. Yi Chuan xue bao= Acta Genetica Sinica 28(5): 433-438. Xu, M., Zhu, L., Shou, H. & Wu, P. (2005). A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology 46(10): 1674-1681. Xu, Y., Zou, J., Zheng, H., Xu, M., Zong, X. & Wang, L. (2019). RNA-Seq transcriptome analysis of rice primary roots reveals the role of flavonoids in regulating the rice primary root growth. Genes 10(3): 213. Yamada, M. (2017). Functions of long intergenic non-coding (linc) RNAs in plants. Journal of Plant Research 130(1): 67-73. Yonemaru, J.-i., Yamamoto, T., Fukuoka, S., Uga, Y., Hori, K. & Yano, M. (2010). Q-TARO: QTL annotation rice online database. Rice 3(2): 194-203. Yu, C., Sun, C., Shen, C., Wang, S., Liu, F., Liu, Y., Chen, Y., Li, C., Qian, Q. & Aryal, B. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). The Plant Journal 83(5): 818-830. Zhang, J., Peng, Y. & Guo, Z. (2008). Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Research 18(4): 508-521. Zhang, J., Zhang, H., Srivastava, A. K., Pan, Y., Bai, J., Fang, J., Shi, H. & Zhu, J.-K. (2018). Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiology 176(3): 2082-2094. Zhang, K., Yuan, M., Xia, H., He, L., Ma, J., Wang, M., Zhao, H., Hou, L., Zhao, S. & Li, P. (2022). BSA‑seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theoretical and applied Genetics: 1-12. Zhang, Q., Li, J., Zhang, W., Yan, S., Wang, R., Zhao, J., Li, Y., Qi, Z., Sun, Z. & Zhu, Z. (2012). The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. The Plant Journal 72(5): 805-816. Zhao, Y., Cheng, S., Song, Y., Huang, Y., Zhou, S., Liu, X. & Zhou, D.-X. (2015). The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling. The Plant Cell 27(9): 2469-2483. Zhao, Y., Hu, Y., Dai, M., Huang, L. & Zhou, D.-X. (2009). The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. The Plant Cell 21(3): 736-748. Zheng, H., Pan, X., Deng, Y., Wu, H., Liu, P. & Li, X. (2016). AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Scientific Reports 6(1): 24778. Zhu, Z.-X., Liu, Y., Liu, S.-J., Mao, C.-Z., Wu, Y.-R. & Wu, P. (2012). A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Molecular Plant 5(1): 154-161. Zou, C., Wang, P. & Xu, Y. (2016). Bulked sample analysis in genetics, genomics and crop improvement. Plant biotechnology journal 14(10): 1941-1955. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89680 | - |
dc.description.abstract | 水稻 (Oryza sativa L.) 為世界重要糧食作物之一,而乾旱是氣候變遷下影響水稻產量的逆境之一,因此加速提升水稻乾旱耐受性至關重要。由於根系是植物汲取水分與養分的來源,透過改善根系結構可能有助於提升水稻乾旱耐受性。本研究目標在於,透過選擇性基因分型 (selective genotyping)、群集分離分析法 (bulk segregant analysis) 分析兩極端群體的 DNA 與 RNA 資訊,在減少時間與金錢成本的前提下,加速找到可能控制最大根長 (maximum root length, MRL) 之候選基因。一共有24個極端根長 (long and short) 的重組自交系 (recombinant inbred lines, RILs) 從 Nipponbare 與 IR64 雜交後的 F11 重組自交系族群中被篩選出來,分別稱作 Long (L) bulk (n=12) 與 Short (S) bulk (n=12)。首先,選擇性基因分型透過 general linear model (GLM) 偵測到 5、8、9 與 10 號染色體上皆有顯著的 SNP peak。其中,位於染色體 5 號的顯著單核甘酸多型性 (single nucleotide polymorphism, SNP) 位點 (S5_15750938) 可解釋70.20% 的外表型變異。接著群集分離分析之RNA 定序資料 (bulked segregant RNA-Seq, BSR-Seq) 則用於差異表現分析以及 RNA QTL-seq 分析。結果顯示,長根與短根兩個群集間共有 160 個差異表現基因 (differentially expressed genes, DEGs) 其中108個在 L bulk 是上調基因,52 個在 S bulk 為上調基因。這些基因共參與了13個生物途徑,其上游 2 kb 啟動子區域內共找到 14 種結合位點。另一方面,以 RNA 進行之 QTL-seq 分析,共偵測到 7 個候選區域分別位在染色體 5、8、9、10 與 12 號上。其中 8 號染色體尾端與 10 號染色體中段同時被 selective genotyping 與 QTL-seq 偵測到,因此我們認為重疊區域對最大根長的發育有重要的影響。另外,偵測到 155 顯著的 SNP/Indel 變異則透過 SnpEff 分析說明有 28 個基因帶有中度影響的變異,38 個基因帶有輕度影響的變異。本研究探勘之重要候選區域與候選基因可能控制根系長度的發育,將有助於未來透過調節根系結構以提升水稻耐旱性之目標。 | zh_TW |
dc.description.abstract | Rice (Oryza sativa L.) is one of the most important edible food crops in the world. Drought stress under climate change is one of the major dilemmas for the final production of rice. Hence, it is necessary to accelerate the improvement of ricedrought tolerance to drought stressin rice. Due to the function of roots to absorb water and nutrients from the soil, root system architecture (RSA) was regarded as a promising factor to advance drought tolerance in plants. In this study, to accelerate the identification of candidate regions and genes controlling maximum root length (MRL), one of the RSA, selective genotyping, bulked segregant RNA sequencing (BSR-Seq), and RNA-based QTL-seq were adopted to analyze the DNA and RNA of two bulks with extreme phenotypes. phenotypes. A total of 24 recombinant inbred lines (RILs) with extremely long and short roots, called Long (L) bulk (n=12) and Short (S) bulk (n=12) were screened from an F11 RILs population derived from a cross between Nipponbare and IR64. Selective genotyping analysis was conducted with a general linear model (GLM) and revealed 4 four significant SNP peaks located in chromosomes 5, 8, 9, and 10. And the most significant peak (S5_15750938) is located on chromosome 5 explaining 70.20 % phenotypic variation. Second, BSR-Seq was used to identify the differentially expressed genes (DEGs) and conduct RNA-based QTL-seq. A total of 160 DEGs were found between 2 two bulks, containing 108 up-regulated genes in L bulk and 52 up-regulated genes in S bulk. Then, MapMan analysis reveals that 160 DEGs are involved in 13 pathways, and PlantCARE clarifies that a total of 14 types of the binding site are enriched in the 2k upstream sequence of 160 DEGs. RNA-based QTL-seq revealed 7 seven candidate regions on chromosomes 5, 8, 9, 10, and 12. Two candidate regions including the end of chr8 and the middle of chr10 overlapped between the results of selective genotyping and RNA-based QTL-seq, which elucidates the importance of these two regions on MRL development. QTL-seq revealed 155 significant SNPs with an ∆SNP-index greater than 0.8 at a significant level of 0.01. SnpEff revealed that 28 genes with moderate impact variants and 38 genes with low impact variants. In this study, we found important genomic regions and genes that might control the seedling MRL development. It is valuable for improving drought resistance by regulating RSA in rice. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:13:43Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:13:43Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員會審定書 I
摘要 II Abstract IV Content VI Index of Figures XI Index of Tables XIII Abbreviation XV Chapter 1. Introduction 1 Drought resistance mechanism 1 Genes and QTL controlling root system architecture in rice 3 Selective genotyping 5 Bulk segregant analysis and QTL-seq 6 Objective of this study 8 Chapter 2. Evaluation of seedling root traits and identification of QTLs by selective genotyping 9 Materials and Methods 9 Plant materials 9 Plant growth condition 9 Evaluation of maximum root length (MRL) 10 Unveiling the source of maximum root length and RSA 10 Root image analysis using EZ-Rhizo and RhizoVision Explorer 10 Single marker analysis with SNPs 11 Candidate genes mining 12 Results 12 Evaluating RILs with extreme root length trait 12 Seedling root development in two parents and 24 extreme root length RILs 13 Selective genotyping and single marker analysis 16 Candidate gene mining through four rice databases 16 Chapter 3. Bulked segregant RNA-Seq reveals differential expressed genes involved in regulating rice seedling root length 18 Materials and Methods 18 Plant materials 18 Plant growth 18 Extraction and isolation of bulked RNA (Figure 6) 18 RNA-Seq library construction and Sequencing (Figure 6) 19 Data cleaning and alignment process 19 Differential expressed gene analysis 20 MapMan analysis 21 Transcription factor searching through PlantPAN3.0 21 Cis-regulation elements detection in DEGs through PlantCARE databases 21 DE gene comparison between two parents and two bulks 22 Results 23 Quality control of RNA-Sequencing reads 23 Identification of differential expressed gene (DEGs) 23 MapMan analysis 24 Cis- and trans-regulation of the 160 DEGs 26 DE gene comparison between two parents and two bulks 27 Chapter 4. Bulked segregant RNA-based QTL-seq reveals significant SNP/Indel associated with rice seedling root length 31 Materials and Methods 31 Plant materials 31 Extraction and Isolation of bulked RNA 31 RNA-seq library construction and sequencing 31 Sequenced reads processing and alignment to reference genome 31 QTL-seq analysis: ∆SNP-index calculation, simulation, sliding window, and filtering 32 Validation of SNP/indel through three check data sets 34 SnpEff analysis 35 Results 36 QTL-seq: SNP-index, ∆SNP-index, confidence interval, and sliding window 36 Read coverage and depth 37 Significant SNP/Indel with opposite allele frequency between extreme bulks 38 Validation of SNPs/indels detected by HISAT2 and QTL-seq 38 Effect of the variant 39 Compare QTL-seq results to selective genotyping and BSR-Seq 40 Chapter 5. Discussion 42 Reproducibility of MRL in three independent experiments 42 Factors affect root image analysis 42 The phenotyping issue of RNA-Seq analysis 43 DE genes in six pairs of comparison 44 Selective genotyping, BSR-seq, and RNA-based QTL-Seq for detecting the candidate regions and genes controlling MRL in rice seedlings 45 Candidate regions and genes controlling seedling root development 47 Detection of intergenic SNPs in BSR-seq dataset 52 Conclusion and perspectives 54 Reference 55 Figures 68 Tables 84 Supplementary data 108 Supplemental figures 108 Supplemental tables 109 | - |
dc.language.iso | en | - |
dc.title | 透過選擇性基因分型與BSR-Seq探勘控制水稻幼苗根系發育之遺傳結構 | zh_TW |
dc.title | Use selective genotyping and BSR-Seq to investigate genetic architecture controlling rice seedling root development | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡育彰 | zh_TW |
dc.contributor.oralexamcommittee | Kai-Yi Chen;Yu-Chang Tsai | en |
dc.subject.keyword | 水稻,最大根長,選擇性基因分型,RNA 定序集群分離分析法,差異表現基因,數量性狀基因座定位,QTL-seq, | zh_TW |
dc.subject.keyword | Rice,Maximum root length,Selective genotyping,Bulk segregant analysis RNA-Seq,Differentially expressed gene,QTL mapping,QTL-seq, | en |
dc.relation.page | 110 | - |
dc.identifier.doi | 10.6342/NTU202204044 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-28 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
dc.date.embargo-lift | 2024-09-30 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。