Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李尉彰zh_TW
dc.contributor.advisorWei-Chang Lien
dc.contributor.author吳典諺zh_TW
dc.contributor.authorTien-Yen Wuen
dc.date.accessioned2023-09-15T16:13:10Z-
dc.date.available2023-09-16-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] P. Jörke and C. Wietfeld, "How green networking may harm your IoT network: Impact of transmit power reduction at night on NB-IoT performance," in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), 2021: IEEE, pp. 753-758.
[2] N. Tamura and H. Yomo, "Wake-up control adapting to destination's active/sleep state for on-demand wireless sensor networks," in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018: IEEE, pp. 1-5.
[3] Y. Lee and J. Nolan, "Low frequency bidirectional communication transponder for security and automotive applications," in Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005., 2005, vol. 2: IEEE, pp. II/185-II/188 vol. 2.
[4] J. J. Bernstein et al., "Resonant acoustic MEMS wake-up switch," Journal of Microelectromechanical Systems, vol. 27, no. 4, pp. 625-634, 2018.
[5] H. Sedaghat-Pisheh and G. M. Rebeiz, "Variable spring constant, high contact force RF MEMS switch," in 2010 IEEE MTT-S International Microwave Symposium, 2010: IEEE, pp. 304-307.
[6] Y. Lin, W.-C. Li, Z. Ren, and C. T.-C. Nguyen, "The micromechanical resonant switch (“RESOSWITCH”)," Tech. Digest, pp. 40-43, 2008.
[7] S.-C. Lu, C.-P. Tsai, and W.-C. Li, "A CMOS-MEMS CC-beam metal resoswitch for zero quiescent power receiver applications," in 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018: IEEE, pp. 801-804.
[8] R. Liu, J. N. Nilchi, Y. Lin, T. Naing, and C.-C. Nguyen, "Zero quiescent power VLF mechanical communication receiver," in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015: IEEE, pp. 129-132.
[9] M. E. Galanko, A. Kochhar, G. Piazza, T. Mukherjee, and G. K. Fedder, "CMOS-MEMS resonant demodulator for near-zero-power RF wake-up receiver," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017: IEEE, pp. 86-89.
[10] P. Horowitz, W. Hill, and I. Robinson, The art of electronics. Cambridge university press Cambridge, 1989.
[11] M. Arunlakshman, "Power and delay analysis of double edge triggered D-flip flop based shift registers in 16nm mosfet technology," Int. J. Adv. Res. Electr. Electron. Instrum. Eng, vol. 3, pp. 8560-8568, 2014.
[12] C.-C. Nguyen and R. T. Howe, "An integrated CMOS micromechanical resonator high-q oscillator," IEEE Journal of Solid-State Circuits, vol. 34, no. 4, pp. 440-455, 1999.
[13] K. Wang and C.-C. Nguyen, "High-order medium frequency micromechanical electronic filters," Journal of Microelectromechanical systems, vol. 8, no. 4, pp. 534-556, 1999.
[14] L. Meirovitch, "Analytical methods in vibrations," 1967.
[15] J. M. Gere and B. J. Goodno, Mechanics of materials. Cengage learning, 2012.
[16] A. Tangel and K. Choi, "“The CMOS inverter” as a comparator in adc designs," Analog Integrated Circuits and Signal Processing, vol. 39, no. 2, pp. 147-155, 2004.
[17] R. Lourens, "Low frequency magnetic transmitter design," Microchip Documentation, pp. 1-12, 2008.
[18] H. Zhang and X. Lv, "Antenna circuit design and simulation for the reader of 125 kHz RFID," in 2012 International Conference on Computer Science and Service System, 2012: IEEE, pp. 507-510.
[19] A. I. Sunny, G. Y. Tian, J. Zhang, and M. Pal, "Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation," Sensors and Actuators A: Physical, vol. 241, pp. 34-43, 2016.
[20] K. A. Makinwa, A. Baschirotto, and P. Harpe, Low-power analog techniques, sensors for mobile devices, and energy efficient amplifiers. Springer, 2019.
[21] H. Masten, "Ring oscillator design in 32nm CMOS with frequency and power analysis for changing supply voltage," Department of Electrical Engineering and Computer Science, Auburn University.
[22] P.-H. P. Wang et al., "A near-zero-power wake-up receiver achieving− 69-dbm sensitivity," IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1640-1652, 2018.
[23] M. Chip, "Three-channel analog front-end device MCP2030," MCP2030 datasheet, DS21981A.
[24] A. AMS, "3D low frequency wake-up receiver data sheet," Austria, Mar, 2015.
[25] W. Xu, Z. Zou, J. Lei, Q. Tong, and W. Wu, "A 13. 8 μW wake-up receiver with 0.4 mVpp sensitivity for low frequency applications," in 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2018: IEEE, pp. 18-19.
[26] Q. Kang, Z. Xie, Y. Liu, and M. Zhou, "125kHz wake-up receiver and 433MHz data transmitter for battery-less TPMS," in 2017 IEEE 12th International Conference on ASIC (ASICON), 2017: IEEE, pp. 1101-1104.
[27] X.-F. Chen, L.-J. Wu, and X.-M. Zhang, "A low-power low frequency wake-up receiver for tire pressure monitoring system," in 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, 2012: IEEE, pp. 1-3.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89678-
dc.description.abstract本論文研究為基於微機電共振式開關結合CMOS邏輯電路的低功耗特點,開發近零待機功耗的喚醒接收器系統。委託國家晶片中心在CMOS-MEMS 0.35µm 2P4M製程平台下整合無線接收器前端以及後端電路,並在國立臺灣大學工學院奈米機電系統研究中心進行晶片的後處理,包括濕蝕刻懸浮製程以及對晶片的初步測試如: 探針式表面分析(Probe-Type Surface Analysis)。由於共振式接收器前端利用共振特性使結構撞擊輸出端並短路,在平時未發生共振現象時是斷路狀態因此不會有電流導通,表現近零功耗的特性。
共振開關以OOK方式調變訊號結合後端的包絡檢測器(Envelope Detector)以及數位檢測器(Digital Detector)進行訊號處理,將解調完的數位邏輯電位"0"與"1"輸入相關器電路中以CMOS邏輯電路完成與密碼本(Codebook)的比對,具有輸入阻抗高、功耗低、抗干擾能力強等優點,只靠閘極電壓控制電路,不需要電流傳遞訊號。微機電共振式接收器前端在工作模式下完成解調工作所需的平均功耗為4.81 μW,完成輸入訊號與密碼本之間的比對並輸出喚醒訊號的平均功耗僅0.743 μW。
zh_TW
dc.description.abstractThis thesis presents a wake-up receiver system with near zero standby power con-sumption, through MEMS resoswitch-embedded receiver frontend and the low power consumption of CMOS logic gate. The chip fabrication was supported by Taiwan Sem-iconductor Research Institute (TSRI) and realized on a 0.35-μm 2poly-4-metal CMOS-MEMS platform. The post-fabrication and test are executed at NEMS Research Center at NTU such as the post-metal-release process and the probe-type surface analy-sis. Since the resoswitch-embedded communication frontend uses the resonance nature to make the structure impact the output electrode end and short circuit, the open circuit when no resonance occurs, so there is no current consumption, exhibited the advantage of near-zero standby power consumption.
The resoswitch applying OOK demodulated input signal, combined with the back-end envelope detector and digital detector for signal processing. Input the demod-ulated digital bits "0" and "1" into the correlator circuit to compare with the codebook with the CMOS logic circuit. It has the advantages of high input impedance, low power consumption, and strong anti-interference ability. Only rely on the gate voltage to con-trol the circuit operation, with no current consumption during data transmission. The av-erage power consumption of the resoswitch-embedded communication frontend that completes the demodulation work in the active mode is only 4.81 μW, and the average power consumption for completing the comparison between the input signal and the codebook and outputting a wake-up signal is only 0.743 μW.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:13:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-15T16:13:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 前言 1
1-1 研究動機 1
1-1-1 喚醒接收機 1
1-1-2 微機電無線接收器 3
1-2 文獻回顧 4
1-2-1 微機電共振開關 4
1-2-2 微機電喚醒接收器 6
1-2-3 相關器電路 8
第二章 微機電模型、後端電路模擬及天線模型建立 10
2-1 微機電共振開關運作原理 10
2-2 微機電共振開關模型及元件設計 11
2-2-1 梳狀摺疊樑式共振開關數學模型 11
2-2-2 電容式共振器靜電力推導 18
2-2-3 時域響應模擬結果 20
2-3 後端電路設計 21
2-4 天線模型 23
第三章 元件製程步驟 26
3-1 CMOS-MEMS 0.35µm標準製程 26
3-2 後製程蝕刻步驟 27
第四章 量測結果與討論 29
4-1 共振開關熱切換訊號 30
4-2 天線及後端電路測試 33
4-3 喚醒接收機 37
第五章 結論與未來展望 42
5-1 結論 42
5-2 未來展望 43
參考文獻 44
附錄 46
-
dc.language.isozh_TW-
dc.subject低功耗zh_TW
dc.subjectRF-MEMSzh_TW
dc.subject喚醒接收器zh_TW
dc.subject訊號接收器zh_TW
dc.subject共振開關zh_TW
dc.subjectwake-up receiveren
dc.subjectresoswitchesen
dc.subjectcommunication receiveren
dc.subjectlow power consumptionen
dc.subjectRF-MEMSen
dc.title基於CMOS-MEMS 共振式開關之無線電喚醒接收機zh_TW
dc.titleA CMOS-MEMS Resoswitch-Based Wake-up Receiveren
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee戴慶良zh_TW
dc.contributor.oralexamcommitteePei-Zen Chang;Ming-Huang Li;Ching-Liang Daien
dc.subject.keywordRF-MEMS,喚醒接收器,訊號接收器,共振開關,低功耗,zh_TW
dc.subject.keywordRF-MEMS,wake-up receiver,communication receiver,resoswitches,low power consumption,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202203815-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2027-09-27-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
11.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved