Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89677
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林澤zh_TW
dc.contributor.advisorChe Linen
dc.contributor.author張仕諺zh_TW
dc.contributor.authorShih-Yen Changen
dc.date.accessioned2023-09-15T16:12:53Z-
dc.date.available2023-09-16-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] S. Zheng, Y. Li, S. Chen, J. Xu, and Y. Yang, “Predicting drug–protein interaction using quasi­visual question answering system,” Nature Machine Intelligence, vol. 2, no. 2, pp. 134–140, 2020.
[2] M. Karimi, D. Wu, Z. Wang, and Y. Shen, “Deepaffinity: interpretable deep learn­ing of compound–protein affinity through unified recurrent and convolutional neural networks,” Bioinformatics, vol. 35, no. 18, pp. 3329–3338, 2019.
[3] Z. Cui, X. Xu, X. Fei, X. Cai, Y. Cao, W. Zhang, and J. Chen, “Personalized recommendation system based on collaborative filtering for iot scenarios,” IEEE Transactions on Services Computing, vol. 13, no. 4, pp. 685–695, 2020.
[4] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston et al., “The youtube video recommendation system,” in Proceedings of the fourth ACM conference on Recommender systems, 2010, pp. 293–296.
[5] C. Gao, X. Wang, X. He, and Y. Li, “Graph neural networks for recommender sys­tem,” in Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, 2022, pp. 1623–1625.
[6] A. Derrow­Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “Eta prediction with graph neural networks in google maps,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 3767–3776.
[7] T. N. Kipf and M. Welling, “Semi­supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
[9] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
[10] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos­Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom­Ackermann et al., “A deep learning approach to antibiotic discovery,” Cell, vol. 180, no. 4, pp. 688–702, 2020.
[11] S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spagnn: Spatially­aware graph neu­ral networks for relational behavior forecasting from sensor data,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 9491–9497.
[12] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement learning for combinatorial optimization: A survey,” Computers & Operations Research, vol. 134, p. 105400, 2021.
[13] J. Sun, W. Guo, D. Zhang, Y. Zhang, F. Regol, Y. Hu, H. Guo, R. Tang, H. Yuan, X. He et al., “A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 2030–2039.
[14] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph attention network,” in The world wide web conference, 2019, pp. 2022–2032.
[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
[16] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in Proceedings of The Web Conference 2020, 2020, pp. 2704–2710.
[17] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and J. Tang, “Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks,” in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 1150–1160.
[18] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
[19] X. Wang, X. He, F. Feng, L. Nie, and T.­S. Chua, “Tem: Tree­enhanced embedding model for explainable recommendation,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1543–1552.
[20] S. Kim, Y.­C. Tsai, K. Singh, Y. Choi, E. Ibok, C.­T. Li, and M. Cha, “Date: Dual attentive tree­aware embedding for customs fraud detection,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 2880–2890.
[21] S. Ivanov and L. Prokhorenkova, “Boost then convolve: Gradient boosting meets graph neural networks,” arXiv preprint arXiv:2101.08543, 2021.
[22] N. A. Asif, Y. Sarker, R. K. Chakrabortty, M. J. Ryan, M. H. Ahamed, D. K. Saha, F. R. Badal, S. K. Das, M. F. Ali, S. I. Moyeen et al., “Graph neural network: A comprehensive review on non­euclidean space,” IEEE Access, vol. 9, pp. 60 588–60 606, 2021.
[23] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive sur­vey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
[24] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.
[25] C. Yang, Y. Xiao, Y. Zhang, Y. Sun, and J. Han, “Heterogeneous network representa­tion learning: A unified framework with survey and benchmark,” IEEE Transactions on Knowledge and Data Engineering, 2020.
[26] S. Tang, B. Li, and H. Yu, “Chebnet: Efficient and stable constructions of deep neural networks with rectified power units using chebyshev approximations,” arXiv preprint arXiv:1911.05467, 2019.
[27] Y. LeCun, Y. Bengio, G. Hinton et al., “Deep learning. nature, 521 (7553), 436­444,” Google Scholar Google Scholar Cross Ref Cross Ref, 2015.
[28] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,” Advances in neural information processing systems, vol. 32, 2019.
[29] S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang, “Relation structure­aware heteroge­neous graph neural network,” in 2019 IEEE international conference on data mining (ICDM). IEEE, 2019, pp. 1534–1539.
[30] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph neural network,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 793–803.
[31] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding,” in Proceedings of The Web Conference 2020, 2020, pp. 2331–2341.
[32] H. Hong, H. Guo, Y. Lin, X. Yang, Z. Li, and J. Ye, “An attention­based graph neural network for heterogeneous structural learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 4132–4139.
[33] A. Graves, A.­r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in 2013 IEEE international conference on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649.
[34] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convo­lutional networks on node classification,” arXiv preprint arXiv:1907.10903, 2019.
[35] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” arXiv preprint arXiv:1909.12223, 2019.
[36] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, 2020, pp. 338–348.
[37] T. Chen, K. Zhou, K. Duan, W. Zheng, P. Wang, X. Hu, and Z. Wang, “Bag of tricks for training deeper graph neural networks: A comprehensive benchmark study,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
[38] Q. Li, Z. Han, and X.­M. Wu, “Deeper insights into graph convolutional networks for semi­supervised learning,” in Thirty­Second AAAI conference on artificial intelligence, 2018.
[39] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
[40] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.­Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
[41] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Cat­boost: unbiased boosting with categorical features,” Advances in neural information processing systems, vol. 31, 2018.
[42] T. Meng, X. Jing, Z. Yan, and W. Pedrycz, “A survey on machine learning for data fusion,” Information Fusion, vol. 57, pp. 115–129, 2020.
[43] T. Baltrušaitis, C. Ahuja, and L.­P. Morency, “Multimodal machine learning: A sur­vey and taxonomy,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 2, pp. 423–443, 2018.
[44] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li, “Efficient attention: Attention with linear complexities,” in Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2021, pp. 3531–3539.
[45] S. Ruder, “An overview of multi­task learning in deep neural networks,” arXiv preprint arXiv:1706.05098, 2017.
[46] L.­C. Lin, C.­H. Liu, C.­M. Chen, K.­C. Hsu, I.­F. Wu, M.­F. Tsai, and C.­J. Lin, “On the use of unrealistic predictions in hundreds of papers evaluating graph represen­tations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7479–7487.
[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high­performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.
[48] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph­centric, highly­performant package for graph neural networks,” arXiv preprint arXiv:1909.01315, 2019.
[49] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradient surgery for multi­task learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 5824–5836, 2020.
[50] S. M. Lundberg and S.­I. Lee, “A unified approach to interpreting model predic­tions,” Advances in neural information processing systems, vol. 30, 2017.
[51] L. S. Shapley, “A value for n­person games,” Classics in game theory, vol. 69, 1997.
[52] X. Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Transferring robustness for graph neural network against poisoning attacks,” in Proceedings of the 13th international conference on web search and data mining, 2020, pp. 600–608.
[53] S. Hou, Y. Fan, Y. Zhang, Y. Ye, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao, “αcyber: Enhancing robustness of android malware detection system against ad­versarial attacks on heterogeneous graph based model,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019, pp. 609–618.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89677-
dc.description.abstract圖神經網路(graph neural network; GNN)可萃取圖結構資訊,在眾多相關的應用場景下取得亮眼的表現,因此近年間收穫大量的關注,是新興的深度機器學習模型。然而在現實場景中,社群之間的複雜互動往往形成相異的節點與邊類型,以及目標節點的高維度的豐富資訊,因此形成異質資訊網路(heterogeneous information network; HIN)。
雖然針對異質圖的異質圖神經網路(heterogeneous graph neural network; HGNN)已有諸多研究,但傳統的異質圖神經網路模型更多地關注圖結構而非節點特徵,且仍面臨圖卷積層數少提取不足;多則表現欠佳的窘境。面對較為注重節點特徵資訊的節點分類任務,HGNN目前仍缺乏更有效的節點特徵萃取機制。
為改善異質圖神經網路面臨的問題,本論文提出一種用於節點分類任務的新穎 HGNN 模型——基於樹模型增強之異質圖神經網路(tree boosted heterogeneous graph neural network; TreeXGNN )。此模型透過整合 梯度提升決策樹(gradient boosted decision tree; GBDT)、具有共享特徵空間的HGNN、特徵融合,與多任務學習模組,可有效提升 HGNN於節點分類任務之特徵萃取,並進一步降低模型複雜度且提高模型泛化能力。
我們在三個著名的異質圖數據集 IMDB、DBLP 和 ACM 上實現最優異的性能,相比先前研究顯著提高了 3.2%。
透過實際場景的視角切入,對本模型中模組與參數探討,配合資料集的特徵可解釋性,本論文成功驗證整合決策樹模型以進行特徵萃取對於HGNN在節點分類任務中的正面意義,奠定了未來相關研究的基礎。
zh_TW
dc.description.abstractGraph neural network (GNN) is an emerging deep learning model. Through graph structure information extraction and outstanding performance in many related application scenarios, GNN has received much attention. However, in real-world scenarios, a heterogeneous information network (HIN), also known as a heterogeneous graph, is often employed to describe intricate interactions between communities through the distinct node and edge types, as well as high dimensional node features providing rich information about the target nodes.
There have been many studies on the heterogeneous graph neural network (HGNN) though, the conventional HGNN models more focus on graph structure rather than node features. Moreover, HGNNs were caught in a dilemma, in which the little number of graph convolution layers brings insufficient extraction, whereas deep layers result in poor performance. In the face of node classification tasks that more concentrate on node feature information, HGNNs require a more functional node feature extraction mechanism.
Towards ameliorating the problems faced by heterogeneous graph neural networks, we propose a novel HGNN node classification model, the tree boosted heterogeneous graph neural network abbreviated as TreeXGNN. With the modules of gradient boosted decision tree (GBDT), HGNN with shared feature space, feature fusion, and joint learning, TreeXGNN can improve the feature extraction of HGNN in node classification tasks and further reduce the model complexity.
We achieve state-of-the-art performance on three well-known HIN datasets, IMDB, DBLP, and ACM, with a significant 3.2% improvement over previous literature.
From the perspective of authentic scenarios, we analyze the modules and parameters in our proposed framework. Incorporating the feature interpretability of experimental datasets, we successfully verify the positive significance of feature extraction for HGNN in the node classification task and lays a foundation for future related research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:12:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-15T16:12:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 緒論 1
第二章 文獻探討 5
2.1圖神經網路 5
2.2異質圖神經網路 6
2.3圖神經網路的挑戰 7
2.4梯度提升決策樹與相關模型 8
第三章 研究方法 11
3.1研究問題描述 11
3.2研究架構 12
3.2.1基於梯度提升決策樹之節點資訊萃取 13
3.2.2特徵融合 14
3.2.3具有共享特徵空間的異質圖神經網路設計 16
3.2.4多任務學習 18
第四章 實驗設計與結果 21
4.1資料集說明 21
4.1.1IMDB 21
4.1.2ACM 23
4.1.3DBLP 24
4.2實驗設置 25
4.2.1評估指標 25
4.2.2實驗環境 29
4.2.3評估基準 29
4.2.4模型超參數選擇 30
4.3實驗結果 31
第五章 討論 35
5.1消融研究 35
5.1.1特徵融合模組之輸入 35
5.1.2特徵融合模組之融合函數 36
5.1.3多任務學習模組 37
5.2模型參數敏感度分析 39
5.2.1GBDT模組參數 39
5.2.2特徵融合模組參數 40
5.2.3HGNN模組參數 41
5.3實驗資料集之特徵可解釋性 41
5.3.1IMDB特徵可解釋性 42
5.3.2ACM特徵可解釋性 42
5.3.3DBLP特徵可解釋性 44
第六章 結論 47
參考文獻 49
-
dc.language.isozh_TW-
dc.subject異質資訊網路zh_TW
dc.subject特徵萃取zh_TW
dc.subject梯度提升決策樹zh_TW
dc.subject圖神經網路zh_TW
dc.subject節點分類zh_TW
dc.subjectheterogeneous information ntworken
dc.subjectnode classificationen
dc.subjectgradient boosted decision treeen
dc.subjectgraph neural networken
dc.subjectfeature extractionen
dc.title異質資訊網路中基於決策樹模型增強之圖神經網路zh_TW
dc.titleBoosting Graph Neural Network with Decision Tree-based Models for Heterogeneous Information Networksen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王釧茹zh_TW
dc.contributor.oralexamcommitteeChih-Yu Wang;Wei-Ho Chung;Chuan-Ju Wangen
dc.subject.keyword異質資訊網路,圖神經網路,梯度提升決策樹,節點分類,特徵萃取,zh_TW
dc.subject.keywordheterogeneous information ntwork,graph neural network,gradient boosted decision tree,node classification,feature extraction,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202202860-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2027-09-25-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
1.82 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved