請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89672
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | zh_TW |
dc.contributor.advisor | Chih-Kung Lee | en |
dc.contributor.author | 張宸瑜 | zh_TW |
dc.contributor.author | Chen-Yu Chang | en |
dc.date.accessioned | 2023-09-15T16:11:27Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 參考文獻 [1] J. Friend and L. Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics," Reviews of Modern Physics, vol. 83, no. 2, pp. 647-704,2011. [2] L. Y. Yeo and J. R. Friend, "Surface Acoustic Wave Microfluidics," Annual Review of Fluid Mechanics, vol. 46, no. 1, pp. 379-406,2014. [3] J. H. Jung, G. Destgeer, J. Park, H. Ahmed, K. Park, and H. J. Sung, "On-Demand Droplet Capture and Release Using Microwell-Assisted Surface Acoustic Waves," Anal Chem, vol. 89, no. 4, pp. 2211-2215,2017. [4] A. Sudeepthi, A. Nath, L. Y. Yeo, and A. K. Sen, "Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves," Langmuir, vol. 37, no. 4, pp. 1578-1587,2021. [5] A. Sciambi and A. R. Abate, "Accurate microfluidic sorting of droplets at 30 kHz," Lab Chip, vol. 15, no. 1, pp. 47-51,2015. [6] J. H. Jung, G. Destgeer, B. Ha, J. Park, and H. J. Sung, "On-demand droplet splitting using surface acoustic waves," Lab Chip, vol. 16, no. 17, pp. 3235-43,2016. [7] P. Brunet, M. Baudoin, O. B. Matar, and F. Zoueshtiagh, "Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: A quantitative study," Physical Review E, vol. 81, no. 3, p. 036315,2010. [8] A. Wixforth, "Acoustically driven planar microfluidics," Superlattices and Microstructures, vol. 33, no. 5-6, pp. 389-396,2003. [9] A. Wixforth, "Acoustically Driven Programmable Microfluidics for Biological and Chemical Applications," JALA: Journal of the Association for Laboratory Automation, vol. 11, no. 6, pp. 399-405,2006. [10] Y. Lei and H. Hu, "SAW-driven droplet jetting technology in microfluidic: A review," Biomicrofluidics, vol. 14, no. 6, p. 061505,2020. [11] J. C. Simon, O. A. Sapozhnikov, V. A. Khokhlova, L. A. Crum, and M. R. Bailey, "Ultrasonic atomization of liquids in drop-chain acoustic fountains," J Fluid Mech, vol. 766, pp. 129-146,2015. [12] G. Lajoinie, T. Segers, and M. Versluis, "High-Frequency Acoustic Droplet Vaporization is Initiated by Resonance," Phys Rev Lett, vol. 126, no. 3, p. 034501,2021. [13] J. Wang, H. Hu, A. Ye, J. Chen, and P. Zhang, "Experimental investigation of surface acoustic wave atomization," Sensors and Actuators A: Physical, vol. 238, pp. 1-7,2016. [14] P. R. Rogers, J. R. Friend, and L. Y. Yeo, "Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet," Lab on a Chip, vol. 10, no. 21, pp. 2979-2985,2010. [15] L. Y. Yeo and J. R. Friend, "Ultrafast microfluidics using surface acoustic waves," Biomicrofluidics, vol. 3, no. 1, p. 12002,2009. [16] W. Liang, S. Tietze, M. Schmitt, and G. Lindner, "Droplet propulsion on non-piezoelectric substrates induced by Lamb waves," 2012. [17] J. Zhu, W. Liang, and G. Li, "Experimental study on the motion of droplets excited by Lamb waves on an inclined non-piezoelectric substrate," Japanese Journal of Applied Physics, vol. 56, no. 9, 2017. [18] W. Liang, F. Zhang, G. Yang, and Z. Wang, "Separation of water from a microliter oil/water mixed drop using Lamb waves on an inclined glass plate," Microfluidics and Nanofluidics, vol. 21, no. 10, 2017. [19] J. Xu, S. Xiu, Z. Lian, H. Yu, and J. Cao, "Bioinspired materials for droplet manipulation: Principles, methods and applications," Droplet, vol. 1, no. 1, pp. 16-42,2022. [20] R. Malinowski, I. P. Parkin, and G. Volpe, "Advances towards programmable droplet transport on solid surfaces and its applications," Chem Soc Rev, vol. 49, no. 22, pp. 7879-7892,2020. [21] "Luanluan Xue, Huizeng Li, An Li, Zhipeng Zhao, Yanlin Song. Droplet Self-Propulsion Based on Heterogeneous Surfaces[J]. Progress in Chemistry, 2021, 33(1): 78-86. ." [22] D. Tian et al., "Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchical-Structured ZnO Mesh Films with Switchable Contact Mode," Advanced Functional Materials, vol. 24, no. 4, pp. 536-542,2014. [23] X. Tang and L. Wang, "Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces," ACS Nano, vol. 12, no. 9, pp. 8994-9004,2018. [24] C. Song, J. K. Moon, K. Lee, K. Kim, and H. K. Pak, "Breathing, crawling, budding, and splitting of a liquid droplet under laser heating," Soft Matter, vol. 10, no. 15, pp. 2679-84,2014. [25] Y. Y. Song et al., "Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport," Nanoscale, vol. 10, no. 8, pp. 3813-3822,2018. [26] H. Dai et al., "Controllable High-Speed Electrostatic Manipulation of Water Droplets on a Superhydrophobic Surface," Adv Mater, vol. 31, no. 43, p. e1905449,2019. [27] G. McHale, C. V. Brown, and N. Sampara, "Voltage-induced spreading and superspreading of liquids," Nat Commun, vol. 4, p. 1605,2013. [28] G. McHale, C. V. Brown, M. I. Newton, G. G. Wells, and N. Sampara, "Dielectrowetting driven spreading of droplets," Phys Rev Lett, vol. 107, no. 18, p. 186101,2011. [29] D. Tian et al., "Fast Responsive and Controllable Liquid Transport on a Magnetic Fluid/Nanoarray Composite Interface," ACS Nano, vol. 10, no. 6, pp. 6220-6,2016. [30] Y. Lin et al., "Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport," Advanced Functional Materials, vol. 28, no. 49, 2018. [31] Y. Ai and B. L. Marrone, "Droplet translocation by focused surface acoustic waves," Microfluidics and Nanofluidics, vol. 13, no. 5, pp. 715-722,2012. [32] M. Takasaki, H. Kotani, and T. Mizuno, "Excitation of surface acoustic wave on a glass substrate using a LiNbO3 piece," International Journal of Automation Technology, vol. 10, no. 4, pp. 574-583,2016. [33] J. Wu, C. Sun, T. Ueda, Y. Tomoeda, I. Nagasawa, and K. Nakamura, "Poly-Phenylene-Sulfide Wedge Transducer for Exciting Surface Acoustic Waves for Removing Droplets on a Glass Plate," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 68, no. 11, pp. 3378-3385,2021. [34] Y. Liu et al., "Flexible and bendable acoustofluidics based on ZnO film coated aluminium foil," Sensors and Actuators B: Chemical, vol. 221, pp. 230-235,2015. [35] R. P. Hodgson, M. Tan, L. Yeo, and J. Friend, "Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics," Applied Physics Letters, vol. 94, no. 2, 2009. [36] S. M. Langelier, L. Y. Yeo, and J. Friend, "UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration," Lab Chip, vol. 12, no. 16, pp. 2970-6,2012. [37] Z. Ma, D. J. Collins, and Y. Ai, "Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave," Anal Chem, vol. 88, no. 10, pp. 5316-23,2016. [38] H. Kotani, M. Takasaki, and T. Mizuno, "Surface AcousticWave Linear Motor Using Glass Substrate," in Motion and Vibration Control: Springer, 2009, pp. 211-219. [39] H. Kotani, M. Takasaki, and T. Mizuno, "P6E-4 Glass Substrate Surface Acoustic Wave Linear Motor," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 2547-2550. [40] M. Schmitt, S. Stich, S. Fromm, F. Fischer, and G. Lindner, "Detection and removal of droplets on non-piezoelectric substrates via mode conversion of Lamb waves," in SENSORS, 2010 IEEE, 2010: IEEE, pp. 304-308. [41] A. R. Rezk, J. K. Tan, and L. Y. Yeo, "HYbriD Resonant Acoustics (HYDRA)," Adv Mater, vol. 28, no. 10, pp. 1970-5,2016. [42] T. M. Research. "Surface Acoustic Wave (SAW) Resonator Market." (accessed. [43] "L. Rayleigh. On waves propagated along the plane surface of an elastic solid [M]. Proc London Math Soc. 1885: 4-11." [44] R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, no. 12, pp. 314-316,1965. [45] K. F. Graff, "Wave motion in elastic solids," (in English), 1991. [46] T. Thitimakorn and N. Anderson, "A 2-D MASW SHEAR-WAVE VELOCITY PROFILE ALONG A TEST SEGMENT OF INTERSTATE I-70, ST. LOUIS, MISSOURI," 2005. [47] I. A. Viktorov, Rayleigh and Lamb waves: physical theory and applications. Transl. from Russian. With a foreword by Warren P. Mason. Plenum press, 1967. [48] B. A. Bolt, "Nuclear explosions and earthquakes. The parted vail," 1976. [49] X. Zhang et al., "A novel sensitive cell-based Love Wave biosensor for marine toxin detection," (in eng), Biosens Bioelectron, vol. 77, pp. 573-9,2016. [50] S. Vazquez, J. Gosalbez, I. Bosch, A. Carrion, C. Gallardo, and J. Paya, "Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates," Sensors (Basel), vol. 19, no. 19, 2019. [51] "Lamb Horace 1917On waves in an elastic plateProc. R. Soc. Lond. A93114–128." [52] J. L. Rose, Ultrasonic guided waves in solid media. Cambridge university press, 2014. [53] H. Jaffe, "Piezoelectric ceramics," Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498,1958. [54] E. Fukada and I. Yasuda, "On the piezoelectric effect of bone," Journal of the physical society of Japan, vol. 12, no. 10, pp. 1158-1162,1957. [55] S. Mishra, L. Unnikrishnan, S. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, vol. 304, 2018. [56] G. A. Borrero, J. P. Bravo, S. F. Mora, S. Velásquez, and F. E. Segura-Quijano, "Design and fabrication of SAW pressure, temperature and impedance sensors using novel multiphysics simulation models," Sensors and Actuators A: Physical, vol. 203, pp. 204-214,2013. [57] A. Ameena and R. Resmi, "Electrode Optimization for Enhancement of Q-Factor in SAW Resonators," in 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 11-12 May 2018 2018, pp. 1294-1297. [58] F. S. Hickernell, "DC Voltage Effects on SAW Device Interdigital Electrodes," in 15th International Reliability Physics Symposium, 12-14 April 1977 1977, pp. 144-148. [59] T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, no. 95, pp. 65-87,1805. [60] R. N. Wenzel, "RESISTANCE OF SOLID SURFACES TO WETTING BY WATER," Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994,1936. [61] C. Eckart, "Vortices and streams caused by sound waves," Physical review, vol. 73, no. 1, p. 68,1948. [62] T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Reviews of Modern Physics, vol. 77, no. 3, pp. 977-1026,2005. [63] M. Alghane, B. X. Chen, Y. Q. Fu, Y. Li, J. K. Luo, and A. J. Walton, "Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3substrate," Journal of Micromechanics and Microengineering, vol. 21, no. 1, 2011. [64] W. L. M. Nyborg, "11 - Acoustic Streaming," in Physical Acoustics, vol. 2, W. P. Mason Ed.: Academic Press, 1965, pp. 265-331. [65] S. J. Lighthill, "Acoustic streaming," Journal of Sound and Vibration, vol. 61, no. 3, pp. 391-418,1978. [66] T. Uchida, T. Suzuki, and S. Shiokawa, "Investigation of acoustic streaming excited by surface acoustic waves," in 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, 7-10 Nov. 1995 1995, vol. 2, pp. 1081-1084 vol.2. [67] J. J. Campbell and W. R. Jones, "Propagation of Surface Waves at the Boundary Between a Piezoelectric Crystal and a Fluid Medium," IEEE Transactions on Sonics and Ultrasonics, vol. 17, no. 2, pp. 71-76,1970. [68] S. Shiokawa, Y. Matsui, and T. Ueda, "Liquid streaming and droplet formation caused by leaky Rayleigh waves," in Proceedings., IEEE Ultrasonics Symposium, 3-6 Oct. 1989 1989, pp. 643-646 vol.1. [69] B. R. Prabhala, M. V. Panchagnula, and S. Vedantam, "Three-dimensional equilibrium shapes of drops on hysteretic surfaces," Colloid and Polymer Science, vol. 291, no. 2, pp. 279-289,2012. [70] K. Nakamura, Ultrasonic transducers. Woodhead publishing Oxford, UK: , 2012. [71] Z. Zhou, J. Tan, J. Zhang, and M. Qin, "Structural optimization and analysis of surface acoustic wave biosensor based on numerical method," International Journal of Distributed Sensor Networks, vol. 15, no. 9, p. 1550147719875648,2019. [72] T. H. Yu, "Modeling of Lamb waves excited by inter-digital transducers deposited on piezoelectric plates," in 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), 7-11 May 2017 2017, pp. 116-119. [73] R. Xu, M. Guizzetti, K. Astafiev, E. Ringgaard, and T. Zawada, "Piezoelectric Surface Acoustic Wave (SAW) Device with Simulated Poling Condition." [74] C. S. Hartmann, D. T. Bell, and R. C. Rosenfeld, "Impulse Model Design of Acoustic Surface-Wave Filters," IEEE Transactions on Microwave Theory and Techniques, vol. 21, no. 4, pp. 162-175,1973. [75] C. S. Hartmann and B. P. Abbott, "A generalized impulse response model for SAW transducers including effects of electrode reflections," in IEEE 1988 Ultrasonics Symposium Proceedings., 2-5 Oct. 1988 1988, pp. 29-34 vol.1. [76] S. E. Miller, "Coupled wave theory and waveguide applications," Bell System Technical Journal, vol. 33, pp. 661-719,1954. [77] G. Tobolka, "Mixed Matrix Representation of SAW Transducers," IEEE Transactions on Sonics and Ultrasonics, vol. 26, pp. 426-427,1979. [78] Y. Tian, H. Li, Y. Ke, C. Yuan, and S. He, "P Matrix Analysis of Surface Acoustic Waves in Piezoelectric Phononic Crystals," (in eng), IEEE Trans Ultrason Ferroelectr Freq Control, vol. 63, no. 5, pp. 757-763,2016. [79] A. K. Nagmani, B. K. Turuk, and B. Behera, "Simulation and optimization of geometrical structure of one-port SAW resonator using FEM," presented at the Materials, Mechanics & Modeling (Ncmmm-2020), 2021. [80] D. Karim, S. Ballandras, T. Laroche, K. Wagner, J.-M. Brice, and X. Perois, "Finite Element Analysis in Combination with Perfectly Matched Layer to the Numerical Modeling of Acoustic Devices in Piezoelectric Materials," Applied Mathematics, vol. 04, pp. 64-71,2013. [81] K. Luo, C. Shao, M. Chai, and J. Fan, "Level set method for atomization and evaporation simulations," Progress in Energy and Combustion Science, vol. 73, pp. 65-94,2019. [82] J. A. Sethian and P. Smereka, "Level set methods for fluid interfaces," Annual review of fluid mechanics, vol. 35, no. 1, pp. 341-372,2003. [83] M. H. Biroun, M. Rahmati, M. Jangi, R. Tao, B. Chen, and Y. Fu, "Computational and experimental analysis of droplet transportation/jetting behaviours driven by thin film surface acoustic waves," Sensors and Actuators A: Physical, vol. 299, p. 111624,2019. [84] I. O. Arukalam, E. E. Oguzie, and Y. Li, "Nanostructured superhydrophobic polysiloxane coating for high barrier and anticorrosion applications in marine environment," Journal of Colloid and Interface Science, vol. 512, pp. 674-685,2018. [85] A. F. Stalder, T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser, "Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 364, no. 1, pp. 72-81,2010. [86] J. T. Luo, N. R. Geraldi, J. H. Guan, G. McHale, G. G. Wells, and Y. Q. Fu, "Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves," Physical Review Applied, vol. 7, no. 1, p. 014017,2017. [87] C. Li and E. Nordlund, "Effects of couplants on acoustic transmission," Rock mechanics and rock engineering, vol. 26, no. 1, pp. 63-69,1993. [88] A. Cafarelli, A. Verbeni, A. Poliziani, P. Dario, A. Menciassi, and L. Ricotti, "Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures," Acta Biomater, vol. 49, pp. 368-378,2017. [89] F. Hickernell, "DC voltage effects on SAW device interdigital electrodes," in 15th International Reliability Physics Symposium, 1977: IEEE, pp. 144-148. [90] A. Rajapaksa, A. Qi, L. Y. Yeo, R. Coppel, and J. R. Friend, "Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation," Lab on a Chip, vol. 14, no. 11, pp. 1858-1865,2014. [91] M. Baudoin, P. Brunet, O. Bou Matar, and E. Herth, "Low power sessile droplet actuation via modulated surface acoustic waves," Applied Physics Letters, vol. 100, p. 154102,2012. [92] K. Dransfeld and E. Salzmann, "Excitation, Detection and Attenuation of High Frequency Elastic Surface Wave," Physical Acoustic, vol. 7, pp. 219-272,2012. [93] J. Zhang et al., "High temperature effects on surface acoustic wave strain sensor," Sensors and Actuators A: Physical, vol. 338, p. 113464,2022. [94] W. Liang and S. Tietze, "Pearls in running drops on an inclined glass substrate excited by Lamb waves," Sci Rep, vol. 7, no. 1, p. 14164,2017. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89672 | - |
dc.description.abstract | 本研究旨在開發可與一般玻璃耦合的表面聲波元件,達到激發玻璃表面聲波用以進行液滴的排除的研究目標。在結構設計上,採用壓電陶瓷基板上沈積銀指叉電極之表面聲波元件,將其耦合在較厚之多層玻璃上,以間接的方式激發在玻璃表面產生表面聲波。在驅動方法上,本研究採用了方波調變頻率,避免高功率下連續驅動過久所造成的元件損壞。本研究並以有限元素分析及實驗驗證表面聲波元件之驅動之頻率,及於玻璃表面產生表面聲波之可行性,並利用等位函數兩相流建立了液滴驅動模型,並進行不同變數實驗,探討表面處理條件、耦合層材料、液珠體積大小、驅動電壓大小、驅動頻率、調變頻率及玻璃基板傾角大小下對液滴驅動效率之影響,最後以噴霧實驗模擬了實際應用情境並驗證排水裝置的效能。本研究成功結合指叉狀之壓電振子,設計振動波長為3.3mm之電極配置,在輸入頻率為1.96MHz,方波調變頻率為100Hz,以及60V的驅動電壓下,結合矽橡膠之聲學耦合層以及經疏水之表面處理的玻璃,成功達到驅動在1秒內即可推動10微升的去離子水液珠,達到約180mm/s~220mm/s的平均速度。在噴霧實驗中,於兩秒內可以有效清除元件作用範圍內90%以上的液滴,並隨著玻璃擺放傾角由0度上升至10度,清除效率提高,最大液珠驅動範圍可達20公分。 | zh_TW |
dc.description.abstract | This study aims to develop a surface acoustic wave (SAW) device that can couple with a thick laminated glass to generate surface acoustic waves on the glass surface for water droplet removal. In the structural design, a PZT substrate with silver interdigital electrodes (IDT) is used to construct the SAW device, and it is coupled with the laminated glass with a silicone coupler. To indirectly induce surface acoustic waves on the glass surface, a square wave is used to modulate the driving signal. It can effectively eliminate overheating and damage to the SAW device due to continuous driving at high power for an extended period. Finite element analysis and experimental studies are conducted to verify the feasibility of using a SAW device to induce surface acoustic waves on glass. Lastly, the droplet removal performance is perimentally verified. In addition, its practical application is also confirmed by demonstrating that water droplets can be removed under a continuous spray. The experimental findings show that using a 3.3mm wavelength SAW device, driven by a square-wave modulated 1.96MHz sinewave at 60V and coupled with the glass using a silicone acoustic coupling layer, droplets can be moved at an average speed of 180mm/s to 200mm/s within 1 second. In the continuous spray experiments, more than 90% of the liquid droplets can effectively be removed within 2 seconds from up to 12cm distance. Finally, for a glass tilt angle from 0 degrees to 10 degrees, the removal efficiency increased, and the maximum range can increase over 20cm long. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:11:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:11:27Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 微流體驅動技術 2 1.2.2 表面聲波應用於液滴驅動 2 1.2.3 表面聲波元件市場分析 8 1.3 論文架構 9 第2章 理論推導與介紹 10 2.1 表面聲波原理 10 2.1.1 簡介 10 2.1.2 固體中的聲波 11 2.2 表面聲波元件設計 15 2.2.1 表面聲波元件工作原理 15 2.2.2 壓電效應 16 2.2.3 壓電材料選擇 17 2.2.4 指叉電極設計原理 19 2.2.5 基板厚度之影響 21 2.3 液滴驅動理論分析 22 2.3.1 液滴的浸潤性與接觸角 22 2.3.2 液滴中的聲流力 23 2.3.3 液滴所受阻力 25 2.3.4 液滴運動理論模型 26 第3章 玻璃除水裝置設計 28 3.1 設計理念 28 3.2 設計架構 29 3.3 結構設計 30 3.3.1 間接激發方式選擇 30 3.3.2 材料選擇 30 3.3.1 指叉電極設計 32 第4章 表面聲波元件分析 34 4.1 表面聲波元件分析方法 34 4.1.1 近似模型 34 4.1.2 有限元素模型 34 4.2 有限元素模型之建立與參數設定 35 4.3 結構模態分析 37 4.4 液滴驅動模型 39 4.4.1 液滴驅動模型之建立 39 4.4.2 結果與討論 41 第5章 實驗架設及裝置 43 5.1 玻璃基板表面處理 43 5.2 耦合層製備 44 5.2.1 固體耦合層之製備、 45 5.3 驅動訊號設計 46 5.4 實驗方案設計 48 第6章 液滴驅動實驗結果與討論 50 6.1 不同耦合層之實驗 50 6.1.1 液體耦合層 50 6.1.2 固體耦合層 53 6.2 不同表面處理之實驗 58 6.3 不同驅動頻率之實驗 63 6.4 不同調變頻率之實驗 67 6.5 不同液滴大小之實驗 71 6.6 不同驅動電壓之實驗 80 6.7 不同玻璃基板傾角之實驗 84 6.8 液滴除水實驗 88 6.8.1 液滴附著清除 88 6.8.2 模擬雨天情境進行液滴清除 90 6.9 總結 92 第7章 結論與未來展望 93 7.1 結論 93 7.2 未來展望 93 參考文獻 95 圖目錄 圖 1 1 Wixforth提出之微流體控制平台[8] 3 圖 1 2 Hodgson等人於薄玻璃片上驅動液滴示意圖[35] 4 圖 1 3 環氧樹脂連接玻璃與壓電片示意圖[36] 4 圖 1 4 矽橡膠微流道耦合於壓電基板上示意圖[37] 5 圖 1 5 表面聲波元件背部耦合至玻璃之示意圖[32] 5 圖 1 6 Takasaki等人團隊超音波馬達配置圖[38] 6 圖 1 7 藍姆波驅動薄玻璃片上之液滴實驗[40] 6 圖 1 8 表面聲波元件不同厚度波長比之振幅測量圖[41] 7 圖 1 9 表面聲波諧振器全球市場分析[42] 8 圖 2 1 在不同結構中可能存在的聲波形式 [1] 10 圖 2 2 縱波及橫波示意圖 11 圖 2 3 雷利波傳播示意圖[48] 12 圖 2 4 洛夫波傳播示意圖[48] 13 圖 2 5 藍姆波對稱及反對稱模態示意圖 [50] 13 圖 2 6 鋁板中的頻散曲線圖[52] 15 圖 2 7 表面聲波感測器與致動器示意圖 16 圖 2 8 正壓電效應示意圖(虛線為形變前,實線為形變後)[55] 17 圖 2 9 逆壓電效應示意圖(虛線為形變前,實線為形變後)[55] 17 圖 2 10 指叉電極示意圖 19 圖 2 11 對稱與反對稱模態之藍姆波頻散曲線圖[41] 21 圖 2 12 液滴接觸角示意圖[59] 22 圖 2 13 表面聲波於液滴內部作用之示意圖 [68] 25 圖 2 14 接觸角滯後示意圖[69] 26 圖 2 15 玻璃基板上液滴受力分析圖[17] 27 圖 3 1 除水裝置示意圖(上視) 28 圖 3 2 除水裝置示意圖 (側視) 28 圖 3 3 除水裝置實際架設圖 29 圖 3 4 玻璃除水裝置設計架構 30 圖 3 5 表面聲波元件與基板耦合方式 (a) 配置A (b) 配置B [38] 30 圖 3 6 水平極化之極化方向及電性示意圖 32 圖 3 7 指叉電極設計參數示意圖 33 圖 3 8 表面聲波元件實體照片 33 圖 4 1 週期性單元模型簡化示意圖 36 圖 4 2 表面聲波元件週期單元COMSOL模型幾何圖 37 圖 4 3 表面聲波元件週期單元COMSOL網格設置圖 37 圖 4 4 液滴驅動模型幾何圖 39 圖 4 5 液滴驅動模型之邊界條件設置圖 40 圖 4 6 液滴驅動模型之網格設置圖 41 圖 4 7 液滴內部聲流力分佈圖 42 圖 4 8 液滴驅動過程模擬時序圖 42 圖 5 1 液滴驅動實驗架設示意圖 43 圖 5 2 10微升之液滴接觸角分析 (a) 表面處理前 (b) 表面處理後 44 圖 5 3 矽橡膠耦合層製備流程圖 45 圖 5 4 指叉電極斷裂(紅圈為斷裂發生處) 46 圖 5 5 輸入訊號示意圖(a)原高頻訊號 (b)調變方波訊號(c)經調變後的訊號 47 圖 6 1 不同液體耦合層條件下,10 液滴移動之 (a) 位移圖 (b) 速度圖 50 圖 6 2 不同液體耦合層下液滴移動平均速度與標準差 51 圖 6 3 不同液體耦合層之液滴運動時序圖 (a) 超音波水膠 (b) 10cps矽油 (c) 100cps矽油 (d) 1000cps 矽油 (e) 去離子水 52 圖 6 4 不同固體耦合層條件下,10 液滴移動之 (a) 位移圖 (b) 速度圖 55 圖 6 5 不同固體耦合層下液滴移動平均速度與標準差 56 圖 6 6 不同固體耦合層之液滴運動時序圖 (a) UV gel (b) 比例A之矽橡膠 (c) 比例B之矽橡膠(d) 比例C之矽橡膠 56 圖 6 7 未經表面處理之液滴初始運動情形 59 圖 6 8 經疏水性塗層處理後之液滴初始運動情形 59 圖 6 9 經疏水性塗層/油膜覆蓋處理後之液滴初始運動情形 59 圖 6 10 不同表面處理條件下,10 液滴移動之 (a) 位移圖 (b) 速度圖 60 圖 6 11 不同表面處理條件下液滴移動平均速度與標準差 61 圖 6 12 不同表面處理之液滴運動時序圖 (a) 疏水性塗層/油膜覆蓋 (b) 疏水性塗層 (c) 無表面處理 61 圖 6 13 不同電極配置下,液滴移動之 (a) 位移圖 (b) 速度圖 63 圖 6 14 不同電極配置下液滴移動平均速度與標準差 65 圖 6 15 不同電極配置之液滴運動時序圖 (a) 電極配置A (b) 電極配置B (c) 電極配置C (d) 電極配置D 65 圖 6 16 不同方波調變訊號下,液滴移動之 (a) 位移圖 (b) 速度圖 68 圖 6 17 不同方波調變頻率下液滴移動平均速度與標準差 69 圖 6 18 不同方波調變頻率下之液滴運動時序圖 (a) 10Hz (b) 100Hz (c) 1000Hz (d) 10000Hz 69 圖 6 19 體積為10 -50 液滴移動之(a) 位移圖 (b) 速度圖 72 圖 6 20 體積為60 -100 液滴移動之(a) 位移圖 (b) 速度圖 73 圖 6 21 不同體積之液滴移動平均速度與標準差 74 圖 6 22 不同體積之液滴運動時序圖 (a) 10 (b) 20 (c) 30 (d) 40 (e) 50 (f) 60 (g) 70 (h) 80 (i) 90 (j) 100 75 圖 6 23 不同驅動電壓下液滴移動之(a) 位移圖 (b) 速度圖 80 圖 6 24 不同驅動電壓下液滴移動平均速度與標準差 81 圖 6 25 不同驅動電壓下之液滴運動時序圖 (a) 60V (b) 50V (c) 40V (d) 30V 82 圖 6 26 不同基板傾角下液滴移動之(a) 位移圖 (b) 速度圖 84 圖 6 27 不同基板傾角下之液滴移動平均速度與標準差 86 圖 6 28 不同基板傾角之液滴運動時序圖 (a) 40度 (b) 30度 (c) 20度 (d) 10度 86 圖 6 29 傾角0度擺放之玻璃基板液滴清除時序圖 89 圖 6 30 傾角5度擺放之玻璃基板液滴清除時序圖 89 圖 6 31 傾角10度擺放之玻璃基板液滴清除時序圖 89 圖 6 32 影像處理過後之清除前後畫面截圖 90 圖 6 33 水平擺放之液滴連續噴霧前後對比圖 91 圖 6 34 傾角5度擺放之液滴連續噴霧前後對比圖 91 圖 6 35 傾角10度擺放之液滴連續噴霧前後對比圖 92 表目錄 表 2 1 壓電材料種類 18 表 3 1 膠合玻璃參數表 31 表 3 2 壓電片型號與材料品質因子參數表 31 表 3 3 PZT-QA型號參數表 32 表 3 4 指叉電極設計參數表 33 表 4 1 COMSOL模擬壓電材料PZT-QA參數設定表 35 表 4 2 COMSOL模擬玻璃參數設定表 36 表 4 3 COMSOL特徵頻率分析結果(A和S分別代表藍姆波反對稱及對稱模態,Hybrid為藍姆波與表面波之混合模態) 38 表 4 4 COMSOL模擬各電極配置之驅動頻率 39 表 4 5 COMSOL模擬材料水參數表 40 表 4 6 COMSOL模擬材料空氣參數表 40 表 4 7 液滴內部體積力設置參數表 41 表 6 1 不同液體耦合層液滴驅動速度與標準差 51 表 6 2 不同比例之矽橡膠於2MHz下之衰減係數 54 表 6 3 不同液體耦合層液滴驅動速度與標準差 55 表 6 4 不同表面處理條件下液滴開始移動之電壓值 58 表 6 5 不同表面處理條件下液滴驅動速度與標準差 61 表 6 6 實際驅動頻率與模擬之驅動頻率差異 63 表 6 7 不同電極配置下液滴驅動速度與標準差 64 表 6 8 不同方波調變頻率下液滴驅動速度與標準差 68 表 6 9 不同液滴體積之驅動速度與標準差 74 表 6 10 不同驅動電壓之驅動速度與標準差 81 表 6 11 不同基板傾角下液滴平均移動速度與標準差 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 以壓電振子產生玻璃表面聲波之液珠排除裝置開發 | zh_TW |
dc.title | Development of Device for Using Piezoelectric Vibrators to Generate Surface Acoustic Wave for Droplets Removal on a Glass Plate | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 吳光鐘;許聿翔 | zh_TW |
dc.contributor.coadvisor | Kuang-Chong Wu;Yu-Hsiang Hsu | en |
dc.contributor.oralexamcommittee | 謝志文 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Chi Sung;Zhi-Wen Xie | en |
dc.subject.keyword | 表面聲波,液滴驅動,聲阻耦合層,指叉式電極, | zh_TW |
dc.subject.keyword | surface acoustic wave,droplet propelling,coupling layer,nterdigital electrodes, | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU202204184 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-29 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2027-09-28 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 13.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。