請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89669
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋孔彬 | zh_TW |
dc.contributor.advisor | Kung-Bin Sung | en |
dc.contributor.author | 伍育汶 | zh_TW |
dc.contributor.author | Yu-Wun Wu | en |
dc.date.accessioned | 2023-09-15T16:10:34Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] L. Fratiglioni et al., "Prevalence of Alzheimer's disease and other dementias in an elderly urban population: relationship with age, sex, and education," Neurology, vol. 41, no. 12, pp. 1886-1886, 1991.
[2] E. Vargas et al., "Beneficial neurocognitive effects of transcranial laser in older adults," Lasers Med Sci, vol. 32, no. 5, pp. 1153-1162, 2017. [3] N. J. Blanco, W. T. Maddox, and F. Gonzalez‐Lima, "Improving executive function using transcranial infrared laser stimulation," Journal of neuropsychology, vol. 11, no. 1, pp. 14-25, 2017. [4] D. W. Barrett and F. Gonzalez-Lima, "Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans," Neuroscience, vol. 230, pp. 13-23, 2013. [5] A. S. Chan, T. L. Lee, M. K. Yeung, and M. R. Hamblin, "Photobiomodulation improves the frontal cognitive function of older adults," International journal of geriatric psychiatry, vol. 34, no. 2, pp. 369-377, 2019. [6] Y. Fu and Y. Zhu, "Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target," Current pharmaceutical design, vol. 16, no. 37, pp. 4074-4079, 2010. [7] C. Jack, Alzheimer’s turning point: A vascular approach to clinical prevention. Springer, 2016. [8] T. H. Sanderson et al., "Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury," Scientific reports, vol. 8, no. 1, pp. 1-12, 2018. [9] J. C. Rojas and F. Gonzalez-Lima, "Neurological and psychological applications of transcranial lasers and LEDs," Biochemical pharmacology, vol. 86, no. 4, pp. 447-457, 2013. [10] A. Bainbridge et al., "Brain mitochondrial oxidative metabolism during and after cerebral hypoxia–ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy," Neuroimage, vol. 102, pp. 173-183, 2014. [11] B. Crosson et al., "Functional imaging and related techniques: an introduction for rehabilitation researchers," Journal of rehabilitation research and development, vol. 47, no. 2, p. vii, 2010. [12] C. Kolyva et al., "Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults," Biomed. Opt. Express, vol. 3, no. 10, pp. 2550-2566, 2012/10/01 2012, doi: 10.1364/BOE.3.002550. [13] A. S. Chan, T.-l. Lee, M. R. Hamblin, and M.-c. Cheung, "Photoneuromodulation makes a difficult cognitive task less arduous," Scientific Reports, vol. 11, no. 1, pp. 1-9, 2021. [14] A. S. Chan, T.-l. Lee, M. R. Hamblin, and M.-c. Cheung, "Photobiomodulation enhances memory processing in older adults with mild cognitive impairment: A functional near-infrared spectroscopy study," Journal of Alzheimer's Disease, vol. 83, no. 4, pp. 1471-1480, 2021. [15] 潘韋翰, "功能性近紅外光譜術測量經顱紅外光刺激以及延遲匹配樣本任務之吸收變化," 碩士, 生醫電子與資訊學研究所, 國立臺灣大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/pgxcwz [16] F. Herold, P. Wiegel, F. Scholkmann, and N. G. Müller, "Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise–cognition science: a systematic, methodology-focused review," Journal of clinical medicine, vol. 7, no. 12, p. 466, 2018. [17] C. L. Saucedo et al., "Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults," Brain Stimulation, vol. 14, no. 2, pp. 440-449, 2021. [18] E. Holmes, D. W. Barrett, C. L. Saucedo, P. O’Connor, H. Liu, and F. Gonzalez-Lima, "Cognitive enhancement by transcranial photobiomodulation is associated with cerebrovascular oxygenation of the prefrontal cortex," Frontiers in Neuroscience, vol. 13, p. 1129, 2019. [19] 高子佳, "以連續波近紅外光譜與三維模型定量人體腦部光學參數," 國立台灣大學電機資訊學院 生醫電子與資訊學研究所碩士論文, 2021. [20] S. K. Piper et al., "A wearable multi-channel fNIRS system for brain imaging in freely moving subjects," Neuroimage, vol. 85, pp. 64-71, 2014. [21] S. Jahani, S. K. Setarehdan, D. A. Boas, and M. A. Yücel, "Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky–Golay filtering," Neurophotonics, vol. 5, no. 1, p. 015003, 2018. [22] J. Malmivuo and R. Plonsey, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA, 1995. [23] R.-Y. Wang, J.-H. Zhou, Y.-C. Huang, and Y.-R. Yang, "Reliability of the Chinese version of the Trail Making Test and Stroop Color and Word Test among older adults," International Journal of Gerontology, vol. 12, no. 4, pp. 336-339, 2018. [24] C. L. Grady, M. L. Furey, P. Pietrini, B. Horwitz, and S. I. Rapoport, "Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease," Brain, vol. 124, no. 4, pp. 739-756, 2001. [25] M. Causse, Z. Chua, V. Peysakhovich, N. Del Campo, and N. Matton, "Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS," Scientific reports, vol. 7, no. 1, pp. 1-15, 2017. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89669 | - |
dc.description.abstract | 在現今社會中失智症的人口持續攀升,先前研究指出,經顱紅外光刺激(transcranial infrared light stimulation, TILS)應用於人體實驗上,能夠增加專注力與短期記憶,因此,經顱紅外光刺激應用於延緩失智症的治療上極有潛力。當照射適當的近紅外光,光進入大腦產生光生物調節作用(photobiomodulation),進而產生含氧血紅素(oxygenated hemoglobin, HbO)、缺氧血紅素(deoxygenated hemoglobin, HbR)以及總血紅素(total hemoglobin, HbT)等血液動力學反應,以及氧化態細胞色素c氧化酶吸收變化。
本研究利用功能性近紅外漫反射光譜(Functional Near Infrared Spectroscopy, FNIRS)技術紀錄受測者於刺激前後進行大腦認知測驗中的光譜資訊,並且將蒐集到的光譜,搭配修正比爾-朗伯定律(Modified Beer-Lambert Law, MBLL)分析法,分析大腦吸收物質濃度相對變化方向,觀察六位受測者刺激前後進行認知測驗時的吸收物質濃度相對變化差異,並針對差異性觀察其與認知能力之關聯。最後透過比較刺激前後吸收物質濃度變化差異與前後測驗答題結果、路徑描繪測驗測得反應時間,評估個別受測者之刺激成效。 以實驗結果,在第一階段實驗中的TILS(十分鐘),將受測者的光衰減變化量分為三種現象,其吸收物質濃度變化結果共同點為含氧血紅素濃度變化上升,其餘缺氧血紅素濃度變化與氧化態細胞色素c氧化酶吸收變化在三種現象中趨勢略微不同,在同個受測者中不同腦區的吸收物質濃度變化反應有不同的結果,在每位受測者中有反應的通道與通道數量也不相同。在大腦認知測驗中前後測比較的吸收物質濃度變化中,大多數在後測中的含氧血紅素濃度變化低於前測,此現象推測為經過長期刺激後大腦思考效率提升。結合答題結果與路徑描繪測驗,在健康受測者中,刺激時間最久的五號受測者,評估結果為進步最多的受測者,而輕微認知障礙受測者的六號受測者,其吸收物質濃度變化也有含氧血紅素濃度變化低於前測的現象但是在答題結果中沒有進步的現象,因此輕微認知障礙受測者推測需要更久的刺激天數才會有明顯的進步成效。 | zh_TW |
dc.description.abstract | The population of dementia continues to rise in today's society. Previous studies have pointed out that transcranial infrared light stimulation (TILS) can be used in human experiments to increase concentration and short-term memory. Therefore, transcranial infrared light stimulation It has great potential in the treatment of delaying dementia. When irradiated with appropriate near-infrared light, the light enters the brain to produce photobiomodulation, which in turn produces oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (total hemoglobin). , HbT) and other hemodynamic responses, as well as changes in the absorption of oxidized cytochrome c oxidase.
In this study, Functional Near Infrared Spectroscopy (FNIRS) technology was used to record the spectral information of subjects in the brain cognitive test before and after stimulation, and the collected spectra were matched with the Modified Beer-Lambert Law (MBLL) Analytical method was used to analyze the relative change direction of the concentration of absorbed substances in the brain, to observe the relative change of the concentration of absorbed substances before and after stimulation of the six subjects during the cognitive test, and to observe the correlation with cognitive ability according to the differences. Finally, the stimulation effect of individual subjects was evaluated by comparing the difference in the concentration of absorbed substances before and after stimulation, the results of the test before and after the test, and the reaction time measured by the Trail Making Test. According to the experimental results, in the TILS (ten minutes) in the first stage of the experiment, the change of light attenuation of the subject is divided into three phenomena. The changes in the concentration of oxygenated heme and the changes in the absorption of oxidized cytochrome c oxidase have slightly different trends in the three phenomena, and the changes in the concentration of absorbed substances in different brain regions in the same subject have different results. The number of channels and the number of channels that are reactive is also different. Among the changes in the concentration of absorbed substances compared before and after the brain cognitive test, most of the changes in the concentration of oxygenated heme in the post-test were lower than those in the pre-test. Combining the answer results and the path delineation test, among the healthy subjects, the No. 5 subject with the longest stimulation time was the subject with the most improvement in the evaluation result, while the No. 6 subject of the mild cognitive impairment subjects, The changes in the concentration of absorbed substances also have the phenomenon that the concentration of oxygenated hemoglobin is lower than that of the pre-test, but there is no improvement in the answering results. Therefore, the subjects with mild cognitive impairment speculate that it will take longer stimulation days to have significant progress. Keywords: Transcranial infrared light stimulation, functional near-infrared diffuse reflectance spectroscopy, modified Beer-Lambert law, changes in cytochrome c oxidase concentration, changes in oxygenated heme concentration, changes in hypoxic heme concentration, brain cognitive function quiz, Trail Making Test | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:10:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:10:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xv Chapter 1 緒論 1 1.1 經顱紅外光刺激作用機制 1 1.2 經顱紅外光刺激之成效 3 1.3 大腦血液動力學反應 6 1.4 研究目的 9 Chapter 2 研究方法 11 2.1 光譜量測技術 11 2.1.1 多通道大腦功能性近紅外漫反射光譜 14 2.1.2 莫爾吸收光譜 15 2.1.3 人體晃動造成訊號失真 16 2.2 實驗硬體系統 17 2.2.1 實驗光路 17 2.2.2 實驗光纖探頭、探頭載具及固定方式 20 2.3 實驗流程 23 2.4 認知量表 26 2.4.1 路徑描繪測驗(Trail Making Test, TMT)[23] 26 2.4.2 蒙特利爾認知評估(Montreal Cognitive Assessment, MoCA) 27 2.5 大腦認知功能測驗 27 2.5.1 延遲匹配樣本任務(delayed matching to sample, DMS) 27 2.5.2 卡片分類測驗(card sorting test) 28 2.6 實驗資料分析流程 29 2.6.1 光譜維度前處理 29 2.6.2 時間維度前處理 31 2.6.3 光衰減變化量 32 2.6.4 吸收物質濃度變化 32 2.6.5 計算擬合成效 33 Chapter 3 實驗結果 35 3.1 人體實驗前頭部晃動測試 35 3.2 實驗通道 39 3.3 受測者資料 40 3.4 經顱紅外光刺激光譜 41 3.4.1 第一種變化 42 .3.4.1.1 光衰減變化量 42 .3.4.1.2 吸收物質濃度相對變化 42 3.4.2 第二種變化 43 .3.4.2.1 光衰減變化量 43 .3.4.2.2 吸收物質濃度相對變化 44 3.4.3 第三種變化 46 .3.4.3.1 光衰減變化量 46 .3.4.3.2 吸收物質濃度相對變化 46 3.4.4 兩種與三種吸收物質分析比較 48 3.5 延遲匹配樣本任務光譜 51 3.5.1 六位受測者綜合結果 52 3.5.2 延遲匹配樣本任務-兩種與三種吸收物質分析比較 53 3.6 卡片分類測驗光譜 54 3.6.1 六位受測者綜合結果 55 3.6.2 兩種與三種吸收物質分析比較 56 3.7 延遲匹配樣本任務答題 57 3.8 卡片分類測驗答題 58 3.9 路徑描繪測驗(TMT) 60 Chapter 4 討論與結論 61 4.1 經顱紅外光刺激 61 4.2 延遲匹配樣本任務 61 4.3 卡片分類測驗 61 4.4 受測者大腦認知功能測驗光譜及答題結果比較 62 4.5 綜合結論與未來展望 65 4.5.1 未來展望 66 Chapter 5 附錄 67 5.1 經顱紅外光刺激光譜擬合 67 5.1.1 三種變化 67 5.2 延遲匹配樣本任務光譜-整體趨勢 68 5.2.1 六位受測者 68 5.3 延遲匹配樣本任務光譜-區塊平均 71 5.3.1 六位受測者 71 5.4 延遲匹配樣本任務光譜擬合 74 5.4.1 六位受測者 74 5.5 延遲匹配樣本任務光譜-兩種與三種吸收物質分析比較 77 5.6 卡片分類測驗光譜-整體趨勢 80 5.6.1 六位受測者 80 5.7 卡片分類測驗光譜擬合 82 5.7.1 六位受測者 82 5.8 卡片分類光譜-兩種與三種吸收物質分析比較 85 REFERENCE 88 LIST OF FIGURES Figure 1 1 經顱紅外光刺激與腺苷三磷酸合成[9] 2 Figure 1 2 物質莫爾吸收光譜[10] 3 Figure 1 3 經顱紅外光刺激時間長短對於認知能力影響之比較 4 Figure 1 4 經顱紅外光刺激對於卡片分類測驗結果影響 5 Figure 1 5 經顱紅外光刺激對於延遲匹配樣本測驗結果影響 6 Figure 1 6 大腦神經血管耦合與血液動力學作用機制[16] 8 Figure 1 7 照光刺激時血氧變化[17] 9 Figure 1 8 照光後進行認知測驗時帶氧血濃度變化[13] 9 Figure 2 1 比爾-朗伯定律光強度衰減示意圖 11 Figure 2 2 大腦功能性近紅外光漫反射[16] Figure 2 3 多通道量測訊號[20] 15 Figure 2 4 莫爾吸收光譜 16 Figure 2 5頭部晃動造成訊號失真[21] 17 Figure 2 6 實驗量測系統 18 Figure 2 7 實驗光路(光源端) 18 Figure 2 8 實驗光路(偵測端) 19 Figure 2 9 固定菱鏡的探頭製作 21 Figure 2 10光源光纖與偵測光纖 21 Figure 2 11 探頭載具結構側視圖 22 Figure 2 12 多通道探頭擺放圖 22 Figure 2 13 探頭載具加壓裝置 23 Figure 2 14 TILS中LED擺放圖 25 Figure 2 15 TILS流程示意圖 25 Figure 2 16 第一階段實驗流程 25 Figure 2 17 第三階段實驗流程 26 Figure 2 18 DMS 測驗流程示意圖 28 Figure 2 19卡片分類測驗示意圖 29 Figure 2 20 實驗資料分析流程圖 29 Figure 2 21 光譜維度前處理流程 30 Figure 2 22 時間維度前處理流程 32 Figure 3 1 長時間靜坐測試 36 Figure 3 2 點擊鍵盤測試 37 Figure 3 3 眨眼睛測試 38 Figure 3 4 上下點頭測試 38 Figure 3 5 挑動眉毛測試 39 Figure 3 6 實驗探頭擺放圖 40 Figure 3 7 經顱紅外光刺激光衰減變化量-第一種 42 Figure 3 8 經顱紅外光刺激頭皮層以及大腦灰質層血液動力學變化-第一種 43 Figure 3 9 經顱紅外光刺激光衰減變化量-第二種 44 Figure 3 10 經顱紅外光刺激頭皮層以及大腦灰質層血液動力學變化-第二種 45 Figure 3 11 經顱紅外光刺激光衰減變化量-第三種 46 Figure 3 12 經顱紅外光刺激頭皮層以及大腦灰質層血液動力學變化-第三種 48 Figure 3 13 經顱紅外光刺激兩種假設之間光譜殘留量差異-第一種 50 Figure 3 14 經顱紅外光刺激兩種假設之間光譜殘留量差異-第二種 50 Figure 3 15 經顱紅外光刺激兩種假設之間光譜殘留量差異-第三種 50 Figure 3 16 六位受測者延遲匹配樣本任務前後測光譜比較 53 Figure 3 17 六位受測者延遲匹配樣本任務兩種假設之間光譜殘留量差異光譜前後測比較 54 Figure 3 18 六位受測者卡片分類測驗前後測光譜比較 56 Figure 3 19 六位受測者卡片分類測驗兩種假設之間光譜殘留量差異光譜前後測比較 57 Figure 4 1 受測者測驗結果前後測比較 63 Figure 4 2 受測者前後測驗吸收濃度變化比較 64 Figure 5 1 經顱紅外光刺激光譜擬合-第一種 67 Figure 5 2 經顱紅外光刺激光譜擬合-第二種 68 Figure 5 3 經顱紅外光刺激光譜擬合-第三種 68 Figure 5 4一號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 69 Figure 5 5 二號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 69 Figure 5 6 三號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 70 Figure 5 7 四號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 70 Figure 5 8 五號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 71 Figure 5 9 六號受測者匹配樣本任務大腦灰質層血液動力學變化-整體趨勢 71 Figure 5 10一號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 72 Figure 5 11 二號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 72 Figure 5 12 三號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 73 Figure 5 13 四號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 73 Figure 5 14 五號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 74 Figure 5 15 六號受測者匹配樣本任務大腦灰質層血液動力學變化-區平均 74 Figure 5 16 一號受測者匹配樣本任務光譜擬合 75 Figure 5 17 二號受測者匹配樣本任務光譜擬合 75 Figure 5 18 三號受測者匹配樣本任務光譜擬合 76 Figure 5 19 四號受測者匹配樣本任務光譜擬合 76 Figure 5 20 五號受測者匹配樣本任務光譜擬合 77 Figure 5 21 六號受測者匹配樣本任務光譜擬合 77 Figure 5 22 延遲匹配樣本任務兩種假設之間殘留量差異光譜-1號受測者 78 Figure 5 23 延遲匹配樣本任務兩種假設之間殘留量差異光譜-2號受測者 78 Figure 5 24 延遲匹配樣本任務兩種假設之間殘留量差異光譜-3號受測者 79 Figure 5 25 延遲匹配樣本任務兩種假設之間殘留量差異光譜-4號受測者 79 Figure 5 26 延遲匹配樣本任務兩種假設之間殘留量差異光譜-5號受測者 79 Figure 5 27 延遲匹配樣本任務兩種假設之間殘留量差異光譜-6號受測者 80 Figure 5 28一號受測者卡片分類頭皮層及大腦灰質層血液動力學變化-整體趨勢 81 Figure 5 29 二號受測者卡片分類大腦灰質層血液動力學變化-整體趨勢 81 Figure 5 30 三號受測者卡片分類大腦灰質層血液動力學變化-整體趨勢 81 Figure 5 31 四號受測者卡片分類大腦灰質層血液動力學變化-整體趨勢 81 Figure 5 32 五號受測者卡片分類大腦灰質層血液動力學變化-整體趨勢 82 Figure 5 33 六號受測者卡片分類大腦灰質層血液動力學變化-整體趨勢 82 Figure 5 34 一號受測者卡片分類光譜擬合 83 Figure 5 35 二號受測者卡片分類光譜擬合 83 Figure 5 36 三號受測者卡片分類光譜擬合 84 Figure 5 37 四號受測者卡片分類光譜擬合 84 Figure 5 38 五號受測者卡片分類光譜擬合 85 Figure 5 39 六號受測者卡片分類光譜擬合 85 Figure 5 40 卡片分類測驗兩種假設之間殘留量差異光譜-1號受測者 85 Figure 5 41 卡片分類測驗兩種假設之間殘留量差異光譜-2號受測者 86 Figure 5 42 卡片分類測驗兩種假設之間殘留量差異光譜-3號受測者 86 Figure 5 43 卡片分類測驗兩種假設之間殘留量差異光譜-4號受測者 86 Figure 5 44 卡片分類測驗兩種假設之間殘留量差異光譜-5號受測者 87 Figure 5 45 卡片分類測驗兩種假設之間殘留量差異光譜-6號受測者 87 LIST OF TABLES 表格 2 1 光學系統硬體元件總表 19 表格 3 1 本研究受測者資料 40 表格 3 2 延遲匹配樣本任務受測者前測答題 57 表格 3 3 延遲匹配樣本任務受測者後測答題 57 表格 3 4 延遲匹配樣本任務受測者前後答題比較 58 表格 3 5 卡片分類測驗受測者前測答題 59 表格 3 6 卡片分類測驗受測者後測答題 59 表格 3 7 卡片分類測驗受測者前後答題比較 59 表格 3 8 路徑描繪測驗受測者前後測反應時間 60 | - |
dc.language.iso | zh_TW | - |
dc.title | 功能性近紅外光譜術應用於經顱紅外光刺激前後之認知功能評估 | zh_TW |
dc.title | Evaluation of cognitive function before and after transcranial infrared light stimulation using functional near-infrared spectroscopy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃立達 | zh_TW |
dc.contributor.oralexamcommittee | Yan-Ci Liu;Li-Da Huang | en |
dc.subject.keyword | 經顱紅外光刺激,功能性近紅外漫反射光譜技術,修正比爾-朗伯定律,細胞色素c氧化酶濃度變化,含氧血紅素濃度變化,缺氧血紅素濃度變化,大腦認知功能測驗,路徑描繪測驗, | zh_TW |
dc.subject.keyword | Transcranial infrared light stimulation,functional near-infrared diffuse reflectance spectroscopy,modified Beer-Lambert law,changes in cytochrome c oxidase concentration,changes in oxygenated heme concentration,changes in hypoxic heme concentration,brain cognitive function quiz,Trail Making Test, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202204000 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
dc.date.embargo-lift | 2025-09-30 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 目前未授權公開取用 | 8.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。