Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89658
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬zh_TW
dc.contributor.advisorKung-Bin Sungen
dc.contributor.author謝昕原zh_TW
dc.contributor.authorHsin-Yuan Hsiehen
dc.date.accessioned2023-09-15T16:07:18Z-
dc.date.available2023-09-16-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] M. G. Levitzky, "Chapter 7. Transport of Oxygen and Carbon Dioxide in the Blood," in Pulmonary Physiology, 8e. New York, NY: The McGraw-Hill Companies, 2013.
[2] 高雄醫學大學解剖學科. "前頸三角的動脈與神經 Anterior Triangle of Neck - A&N." http://anatomy.kmu.edu.tw/vapp/Anterior%20Triangle%20of%20Neck%20-%20AN.html (accessed.
[3] K. R. Walley, "Use of Central Venous Oxygen Saturation to Guide Therapy," (in English), Am J Resp Crit Care, vol. 184, no. 5, pp. 514-520, Sep 1 2011. [Online]. Available: <Go to ISI>://WOS:000294478200011.
[4] T. J. Akl, M. A. Wilson, M. N. Ericson, and G. L. Cote, "Quantifying tissue mechanical properties using photoplethysmography," (in English), Biomed Opt Express, vol. 5, no. 7, pp. 2362-2375, Jul 1 2014. [Online]. Available: <Go to ISI>://WOS:000338929100028.
[5] E. P. Rivers, D. S. Ander, and D. Powell, "Central venous oxygen saturation monitoring in the critically ill patient," Current opinion in critical care, vol. 7, no. 3, pp. 204-211, 2001.
[6] 蔡明儒. (2013) 中心靜脈導管簡介. 高醫醫訊.
[7] P. Andrews, N. Dearden, and J. Miller, "Jugular bulb cannulation: description of a cannulation technique and validation of a new continuous monitor," British journal of anaesthesia, vol. 67, no. 5, pp. 553-558, 1991.
[8] T. Nakajima, H. Ohsumi, and M. Kuro, "Accuracy of continuous jugular bulb venous oximetry during cardiopulmonary bypass," Anesthesia and Analgesia, vol. 77, no. 6, pp. 1111-1115, 1993.
[9] L. Howard, S. P. Gopinath, M. Uzura, A. Valadka, and C. S. Robertson, "Evaluation of a new fiberoptic catheter for monitoring jugular venous oxygen saturation," Neurosurgery, vol. 44, no. 6, pp. 1280-1285, 1999.
[10] R. M. Schell and D. J. Cole, "Cerebral monitoring: jugular venous oximetry," Anesthesia & Analgesia, vol. 90, no. 3, pp. 559-566, 2000.
[11] T. Li, M. Duan, K. Li, G. Yu, and Z. Ruan, "Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy," Biomed Opt Express, vol. 6, no. 9, pp. 3431-3436, 2015.
[12] Z. Ruan et al., "Monitoring tissue blood oxygen saturation in the internal jugular venous area using near infrared spectroscopy," Genet Mol Res, vol. 14, no. 1, pp. 2920-2928, 2015.
[13] D. A. Colquhoun, J. M. Tucker-Schwartz, M. E. Durieux, and R. H. Thiele, "Non-invasive estimation of jugular venous oxygen saturation: a comparison between near infrared spectroscopy and transcutaneous venous oximetry," Journal of clinical monitoring and computing, vol. 26, no. 2, pp. 91-98, 2012.
[14] D. C. McGee and M. K. Gould, "Preventing complications of central venous catheterization," New England journal of medicine, vol. 348, no. 12, pp. 1123-1133, 2003.
[15] "Mespere LifeSciences." https://www.mespere.com/copy-of-venart-cardiac-output (accessed.
[16] "Research Has Found Neck Pain Is More Prevalent in Women." https://www.shape-able.com/study-reveals-that-neck-pain-is-more-common-in-women-than-men.html (accessed.
[17] J. L. N. a. E. F. B. Frederic H. Martini, in Fundamentals of Anatomy & Physiology, 9 ed.: Pearson Education, Inc., 2011, ch. 20.
[18] N. Metropolis and S. Ulam, "The monte carlo method," Journal of the American statistical association, vol. 44, no. 247, pp. 335-341, 1949.
[19] M. K. S. A. Prahl, S. L. Jacques, A. J. Welch, "A Monte Carlo model of light propagation in tissue," in Dosimetry of laser radiation in medicine and biology, 1989, no. 5: International Society for Optics and Photonics, pp. 102-111.
[20] L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J, vol. 93, no. 1, pp. 70-83, Jan 1941. [Online]. Available: <Go to ISI>://WOS:000188077900011.
[21] E. Alerstam, S. Andersson-Engels, and T. Svensson, "White Monte Carlo for time-resolved photon migration," J Biomed Opt, vol. 13, no. 4, p. 041304, 2008.
[22] A. Sassaroli and F. Martelli, "Equivalence of four Monte Carlo methods for photon migration in turbid media," JOSA A, vol. 29, no. 10, pp. 2110-2117, 2012.
[23] C. K. Hayakawa et al., "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Optics letters, vol. 26, no. 17, pp. 1335-1337, 2001.
[24] I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan, "Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model," (in English), J Biomed Opt, vol. 12, no. 1, Jan-Feb 2007. [Online]. Available: <Go to ISI>://WOS:000245505400031.
[25] C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.
[26] D. Kuonen, "Data mining and Statistics: What is the connection?," The Data Administration Newsletter, vol. 30, pp. 1-6, 2004.
[27] A. Kulkarni. "Jump Start to Artificial Intelligence." https://hackernoon.com/jump-start-to-artificial-intelligence-f6eb30d624ec (accessed.
[28] H. Wu, "Global stability analysis of a general class of discontinuous neural networks with linear growth activation functions," Information Sciences, vol. 179, no. 19, pp. 3432-3441, 2009.
[29] J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA journal of numerical analysis, vol. 8, no. 1, pp. 141-148, 1988.
[30] "<IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.pdf>," 1991.
[31] "Monte Carlo eXtreme." http://mcx.space/ (accessed.
[32] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," (in English), J Phys D Appl Phys, vol. 38, no. 15, pp. 2543-2555, Aug 7 2005, doi: 10.1088/0022-3727/38/15/004.
[33] E. K. Chan, B. Sorg, D. Protsenko, M. ONeil, M. Motamedi, and A. J. Welch, "Effects of compression on soft tissue optical properties," (in English), Ieee J Sel Top Quant, vol. 2, no. 4, pp. 943-950, Dec 1996, doi: Doi 10.1109/2944.577320.
[34] R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, "Optical properties of in vitro epidermis and their possible relationship with optical properties of in vivo skin," Journal of Photochemistry and Photobiology B: Biology, vol. 16, no. 2, pp. 127-140, 1992.
[35] E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range," (in English), J Biomed Opt, vol. 11, no. 6, Nov-Dec 2006, doi: Artn 064026
10.1117/1.2398928.
[36] C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," (in English), Phys Med Biol, vol. 43, no. 9, pp. 2465-2478, Sep 1998, doi: Doi 10.1088/0031-9155/43/9/003.
[37] A. M. K. Nilsson, R. Berg, and S. Anderssonengels, "Measurements of the Optical-Properties of Tissue in Conjunction with Photodynamic Therapy," (in English), Appl Optics, vol. 34, no. 21, pp. 4609-4619, Jul 20 1995, doi: Doi 10.1364/Ao.34.004609.
[38] M. Friebel, J. Helfmann, U. Netz, and M. Meinke, "Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm," (in English), J Biomed Opt, vol. 14, no. 3, May-Jun 2009, doi: Artn 034001
10.1117/1.3127200.
[39] M. Meinke, G. Muller, J. Helfmann, and M. Friebel, "Empirical model functions to calculate hematocrit-dependent optical properties of human blood," (in English), Appl Optics, vol. 46, no. 10, pp. 1742-1753, Apr 1 2007, doi: Doi 10.1364/Ao.46.001742.
[40] A. Roggan, M. Friebel, K. Dorschel, A. Hahn, and G. Muller, "Optical properties of circulating human blood in the wavelength range 400-2500 NM," (in English), J Biomed Opt, vol. 4, no. 1, pp. 36-46, Jan 1999, doi: Doi 10.1117/1.429919.
[41] S. L. Jacques, "Optical properties of biological tissues: a review," (in English), Phys Med Biol, vol. 58, no. 11, pp. R37-R61, Jun 7 2013, doi: 10.1088/0031-9155/58/11/R37.
[42] M. Friebel, A. Roggan, G. J. Müller, and M. C. Meinke, "Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions," J Biomed Opt, vol. 11, no. 3, p. 034021, 2006.
[43] N. Bosschaart, G. J. Edelman, M. C. Aalders, T. G. van Leeuwen, and D. J. Faber, "A literature review and novel theoretical approach on the optical properties of whole blood," Lasers in medical science, vol. 29, no. 2, pp. 453-479, 2014.
[44] A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, "Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review," (in English), Journal of Innovative Optical Health Sciences, vol. 4, no. 1, pp. 9-38, Jan 2011. [Online]. Available: <Go to ISI>://WOS:000208648100003.
[45] G. Kandel and A. Aberman, "Mixed venous oxygen saturation: its role in the assessment of the critically ill patient," Archives of Internal Medicine, vol. 143, no. 7, pp. 1400-1402, 1983.
[46] L. D. Nelson, "Continuous venous oximetry in surgical patients," Annals of surgery, vol. 203, no. 3, p. 329, 1986.
[47] P. van Beest, G. Wietasch, T. Scheeren, P. Spronk, and M. Kuiper, "Clinical review: use of venous oxygen saturations as a goal-a yet unfinished puzzle," Critical Care, vol. 15, no. 5, pp. 1-9, 2011.
[48] S. C. S. S. Lokeshwaran. "Venous Oxygen Saturation." https://www.ncbi.nlm.nih.gov/books/NBK564395/ (accessed.
[49] J. V. Pope et al., "Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis," Annals of emergency medicine, vol. 55, no. 1, pp. 40-46. e1, 2010.
[50] H. Sørensen et al., "Extra‐cerebral oxygenation influence on near‐infrared‐spectroscopy‐determined frontal lobe oxygenation in healthy volunteers: a comparison between INVOS‐4100 and NIRO‐200 NX," Clinical physiology and functional imaging, vol. 35, no. 3, pp. 177-184, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89658-
dc.description.abstract本研究主要目標在於以非侵入式的近紅外光量測受試者頸部組織的漫反射光譜,並透過蒙地卡羅演算法及類神經網路的方式來建立預測模型,用以定量內頸靜脈的血氧飽和度的變化量。

量測系統上,使用LED光源,選擇5個分析波長,分別為730、760、780、810、850 (nm),搭配自製的偵測光纖束來對人體進行量測。蒙地卡羅的組織模型則利用超音波影像來輔助建立,使其能夠更接近的真實的組織結構,而獲得更加準確的模擬資料。訓練神經網路所需要的大量模擬光譜則藉由白蒙地卡羅及擾動式蒙地卡羅來進行加速。建立一套能夠分析並定量內頸靜脈血氧飽和度變化量的預測模型。

本研究所建立之模型可預測出內頸靜脈血氧飽和度變化量,誤差小於4%,但預測模型會受到其他淺層組織的影響,此問題可用增加較短通道的偵測光纖來改善。活體實驗上,以過度換氣的方式來調變受試者的血氧飽和度,並以本研究建立之預測模型分析,其結果與預期吻合,可說明本研究之方法及組織模型是能夠用來預測活體組織的重要生理參數:內頸靜脈血氧飽和度變化量。
zh_TW
dc.description.abstractThe goal of this study is to measure the diffuse reflectance spectrum (DRS) of the neck tissue of the subject non-invasively, with the Monte Carlo algorithm and neural network to quantify the Changes in blood oxygen saturation in the internal jugular vein (IJV).

On the measurement system, an LED light source with a wavelength range of 550 ~ 1100 (nm) and a center wavelength of 700 nm is used, and a self-made detection fiber bundle is used to measure the human body. Ultrasound imaging is used to aid in the creation of tissue models of Monte Carlo, so that it can be closer to the real tissue structure and obtain more accurate simulation data. The large number of simulated spectra needed to train the neural network is accelerated by white Monte Carlo and perturbed Monte Carlo. To establish a predictive model capable of analyzing and quantifying changes in internal jugular vein oxygen saturation.

The model established in this study can predict the changes in the oxygen saturation of the internal jugular vein with an error of less than 4%, but the prediction model will be affected by other superficial tissues. This problem can be improved by adding a detection fiber with a shorter channel. In the in vivo experiment, hyperventilation was used to modulate the blood oxygen saturation of the subjects, and the prediction model was used to analyze the results. to predict unknown physiological parameters (ΔSijvO2) of living tissue.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:07:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-15T16:07:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究問題 3
1.4 文獻回顧 4
Chapter 2 理論與研究背景介紹 6
2.1 組織結構 6
2.2 漫反射光譜 7
2.3 蒙地卡羅演算法 8
2.3.1 蒙地卡羅模擬 8
2.3.2 White Monte Carlo 11
2.3.3 Perturbed Monte Carlo 11
2.4 類神經網路 12
2.4.1 基本原理 12
2.4.2 損失函數及梯度下降法 14
Chapter 3 研究工具與方法 15
3.1 光譜量測系統 15
3.1.1 光源端 15
3.1.2 偵測端 18
3.1.3 系統安全性 20
3.2 順向模擬工具 21
3.2.1 光源 21
3.2.2 組織模型 23
3.3 預測模型 26
3.3.1 訓練資料 26
3.3.2 預測模型之輸入 28
Chapter 4 實驗結果與討論 30
4.1 光學系統分析 30
4.1.1 光源穩定度 30
4.1.2 系統雜訊分析 30
4.2 Perturbed Monte Carlo 之驗證 32
4.3 模擬光譜分析 33
4.3.1 測試光譜之參數設定 35
4.3.2 單一SDS之預測模型 (SDS = 20 mm) 36
4.3.3 雙SDS預測模型(SDS=15、20 mm) : 40
4.4 活體光譜分析 44
4.4.1 實驗光譜前處理 44
4.4.2 過度換氣實驗 46
4.4.3 IJV 管徑大小對預測模型之影響 47
4.4.4 不同SDS下的訊號變化分析 50
Chapter 5 結論與未來展望 53
5.1 結論 53
5.1.1 模擬驗證 53
5.1.2 活體實驗 53
5.2 未來展望 53
5.2.1 改善量測系統探頭 53
5.2.2 增加波長及通道 53
5.2.3 組織模型之改良 54
REFERENCE 55
-
dc.language.isozh_TW-
dc.subject蒙地卡羅演算法zh_TW
dc.subject血氧飽和度zh_TW
dc.subject擾動式蒙地卡羅zh_TW
dc.subject漫反射光譜zh_TW
dc.subject類神經網路zh_TW
dc.subject內頸靜脈zh_TW
dc.subjectArtificial neural networken
dc.subjectDiffuse Reflectance Spectrumen
dc.subjectInternal Jugular Veinen
dc.subjectOxygen Saturationen
dc.subjectMonte Carlo Algorithmen
dc.subjectPerturbed Monte Carloen
dc.title以近紅外光譜及類神經網路定量內頸靜脈血氧飽和度變化量zh_TW
dc.titleQuantification of Changes in Internal Jugular Vein Oxygen Saturation by Near Infrared Spectroscopy and Artificial Neural Networken
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳峻宇zh_TW
dc.contributor.oralexamcommitteeFu-Shun Hsu;Chun-Yu Wuen
dc.subject.keyword漫反射光譜,內頸靜脈,血氧飽和度,蒙地卡羅演算法,擾動式蒙地卡羅,類神經網路,zh_TW
dc.subject.keywordDiffuse Reflectance Spectrum,Internal Jugular Vein,Oxygen Saturation,Monte Carlo Algorithm,Perturbed Monte Carlo,Artificial neural network,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202204054-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-09-30-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf4.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved